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In the materials science domain the data-driven science paradigm has become the focus since 
the beginning of the 2000s. A large number of research groups and communities are building 
and developing data-driven workflows. However, much of the data and knowledge is stored in 
different heterogeneous data sources maintained by different groups. This leads to a reduced 
availability of the data and poor interoperability between systems in this domain. Ontology-
based techniques are an important way to reduce these problems and a number of efforts have 
started. In this paper we investigate efforts in the materials science, and in particular in the 
nanotechnology domain, and show how such ontologies developed by domain experts, can be 
improved. We use a phrase-based topic model approach and formal topical concept analysis on 
unstructured text in this domain to suggest additional concepts and axioms for the ontology 
that should be validated by a domain expert. We describe the techniques and show the useful-
ness of the approach through an experiment where we extend two nanotechnology ontologies 
using approximately 600 titles and abstracts.
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1 Introduction
From the beginning of the 2000s materials science has shifted towards its fourth paradigm, (big) data-
driven science (Agrawal & Choudhary 2016). More and more researchers in materials science have realized 
that data-driven techniques could accelerate the discovery and design of materials. Therefore, a large 
number of research groups and communities have developed data-driven workflows including data repos-
itories (for an overview see (Lambrix et al. 2019)) and data analytics tools for particular purposes. As 
data-driven techniques become widely used, big data challenges regarding volume, variety, variability and 
veracity (Lambrix et al. 2019) and challenges in reproducing, sharing, and integrating data (Kalidindi & De 
Graef 2015, Agrawal & Choudhary 2016, Tropsha et al. 2017, Karcher et al. 2018, Rumble et al. 2019) are 
growing at the same time.

These challenges also occurred in other fields. For instance, in (Lambrix 2005) the problems of locat-
ing, retrieving and integrating data in the biomedical field were addressed. These problems relate to the 
more recently introduced FAIR principles that aim to support machines to automatically find and use data, 
and individuals to reuse the data (Wilkinson et al. 2016). The FAIR principles state that data should be 
Findable, Accessible, Interoperable, and Reusable, respectively. In different areas research is on the way to 
conform data management to these principles, including in the materials science domain (Draxl & Scheffler 
2018). One of the recognized enablers for the principles are ontologies and ontology-based techniques. 
Ontologies provide a shared standardized representation of knowledge of a domain. By describing data 
using ontologies, the data will be more findable. By using ontologies for representing the metadata, the 
level of accessibility can be raised. By using the same terminology as defined by ontologies, interoperability 
is enabled. Finally, as ontologies are shared and standardized, reusability is supported.
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Taking nanotechnology as an example, in (Tropsha et al. 2017) it is stated that there exists a gap between 
data generation and shared data access. The domain lacks standards for collecting and systematically repre-
senting nanomaterial properties. In (Karcher et al. 2018) stakeholder-identified technical and operational 
challenges for the integration of data in the nanotechnology domain are presented. The technical chal-
lenges mainly refer to (i) the use of different data formats, (ii) the use of different vocabularies, (iii) the lack 
of unique identifiers, and (iv) the use of different data conceptualization methods. In terms of operational 
challenges, they refer to (i) the fact that organizations have different levels of data quality and completeness, 
and (ii) the lack of understandable documentation. To solve these challenges, it is proposed that ontologies 
and ontology-based techniques can play a significant role in the data-driven materials science and enable 
reproduction, sharing and integration of data. This was, for instance, the main outcome of a workshop on 
interoperability in materials modelling organized by the European Materials Modelling Council (European 
Materials Modelling Council 2017).

Although in its infancy, some organizations and research groups have started to develop ontologies and 
standards for the materials domain (Section 2.2), including in the nanotechnology domain. However, devel-
oping ontologies is not an easy task and often the resulting ontologies are not complete. In addition to 
being problematic for the correct modelling of a domain, such incomplete ontologies also influence the 
quality of semantically-enabled applications such as ontology-based search and data integration. Incomplete 
ontologies when used in semantically-enabled applications can lead to valid conclusions being missed. For 
instance, in ontology-based search, queries are refined and expanded by moving up and down the hierar-
chy of concepts. Incomplete structure in ontologies influences the quality of the search results. In experi-
ments in the biomedical field, an example was given where a search in PubMed (http://www.ncbi.nlm.nih.
gov/pubmed/), a large database with abstracts of research articles in the biomedical field, using the MeSH 
(Medical Subject Headings) (http://www.nlm.nih.gov/mesh/) ontology would miss 55% of the documents 
if the relation between the concepts Scleral Disease and Scleritis is missing (Liu & Lambrix 2010).

In this paper, we present a novel method for extending existing ontologies by detecting new concepts and 
relations in the concept hierarchy that should be included in the ontologies. We do this by presenting a new 
approach, formal topical concept analysis, that integrates a variant of topic modeling and formal concept 
analysis. Further, we apply our method to two ontologies (NanoParticle Ontology and eNanoMapper) in the 
materials science domain. The choice of the use of ontologies in the nanotechnology domain is motivated 
by the fact that, as we have shown before, there is an awareness of the need for ontologies to deal with 
interoperability and reusability issues. Further, there are not so many ontologies in materials science yet (see 
Section 2.2) and the chosen ontologies are among the more mature ontologies in the field. Therefore, they 
represent the most difficult case for extending ontologies.

The remainder of the paper is organized as follows. In Section 2 we describe what ontologies are, efforts 
on ontologies in the materials domain as well as work on extending ontologies. Section 3 describes our 
approach while Section 4 shows and discusses the results of the application of our approach in the nano-
technology domain. We show how NanoParticle Ontology and eNanoMapper were extended and evaluate 
the usefulness of the approach. We also compare our results to the results of an experiment with another 
popular system on the same data. Finally, the paper concludes in Section 5.

2 Background
2.1 Ontologies
Intuitively, ontologies can be seen as defining the basic terms and relations of a domain of interest, as well 
as the rules for combining these terms and relations. Ontologies are used for communication between 
people and organizations by providing a common terminology over a domain. They provide the basis for 
interoperability between systems, and can be used as an index to a repository of information as well as a 
query model and a navigation model for data sources. They are often used as a basis for integration of data 
sources, thereby alleviating the variety and variability problems. The benefits of using ontologies include 
reuse, sharing and portability of knowledge across platforms, and improved maintainability, documenta-
tion, maintenance, and reliability. Overall, ontologies lead to a better understanding of a field and to more 
effective and efficient handling of information in that field (e.g., (Stevens et al. 2000).

From a knowledge representation point of view, ontologies may contain four components: (i) concepts 
that represent sets or classes of entities in a domain, (ii) instances that represent the actual entities, (iii) rela-
tions, and (iv) axioms that represent facts that are always true in the topic area of the ontology. Axioms can 
represent such things as domain restrictions, cardinality restrictions, or disjointness restrictions. Ontologies 
can be classified according to which components and the information regarding the components they con-
tain. As an example, Figure 1 represents a small piece of the NanoParticle Ontology (Thomas et al. 2011) 
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regarding ‘chemical entity’ and ‘quality’. Regarding chemical entities NanoParticle Ontology contains, for 
instance, the concepts chemical entity, chemical substance, ion, particle, isotope and molecular entity. The 
black full arrows represent axioms representing is-a relations, i.e. if A is a B, then all entities that belong 
to concept A also belong to concept B. We also say then that A is a sub-concept of B. In this example we 
have that chemical substance, particle, ion, isotope and molecular entity are sub-concepts of chemical entity. 
Therefore, all chemical substances, particles, ions, isotopes, and molecular entities are also chemical entities. 
Further, all primary particles are particles, all nanoparticles are primary particles, all polymeric nanoparti-
cles are nanoparticles and all gelatin nanoparticles are polymeric nanoparticles. The is-a relation is transi-
tive such that, for instance, a gelatin nanoparticle is also a particle. Regarding different kinds of qualities 
NanoParticle Ontology contains, for instance, the concepts particle size, molecular weight, particle concen-
tration, organic, inorganic, shape, chemical composition, density, hydrodynamic size, mass, size, and electric 
charge. Further, particles have qualities; this is represented by an axiom that states that concepts particle and 
quality are connected to each other by the relation has quality (green dashed arrows in Figure 1). Properties 
represented by relations are inherited via the is-a hierarchy. Therefore, also the subconcepts of particles are 
related to qualities.

In Figure 2 we show the part of NanoParticle Ontology that represents particles using the ontology devel-
opment system Protégé (https://protege.stanford.edu/). On the left hand side the concepts and the is-a 
hierarchy are shown. The is-a relations are represented by indentation. For instance, gelatin nanoparticle 
(highlighted in Figure 2) is a sub-concept of polymeric nanoparticle which in its turn is a sub-concept of 
nanoparticle. On the right-hand side of Figure 2 information related to the axioms are shown using a special 
notation reflecting constructs in the representation language OWL (http://www.w3.org/TR/owl-features/, 

Figure 1: Example from NanoParticle Ontology.

Figure 2: Example from NanoParticle Ontology opened in Protégé.
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http://www.w3.org/TR/owl2-overview/), a knowledge representation language that is often used for repre-
senting ontologies and that is based on description logics (Baader et al. 2010). For instance, we note that the 
concept gelatin nanoparticle was defined to be equivalent to nanoparticle and (has_component_part some 
gelatin). This means that every gelatin nanoparticle is a nanoparticle that has a component that is gelatin, 
and vice versa, whenever a nanoparticle has a component that is gelatin, then it is a gelatin nanoparticle. 
Further, there is information about the types of qualities that gelatin nanoparticles have (inherited from the 
particle concept). An advantage of using a description logics-based representation is that it allows for rea-
soning. In the ontology it was defined that gelatin nanoparticle is equivalent to nanoparticle and (has_com-
ponent_part some gelatin) (as we just noted), that polymeric nanoparticle is equivalent to nanoparticle and 
(has_component_part some polymer), and that gelatin is a subconcept of protein which is a subconcept of 
biopolymer which is in its turn a subconcept of polymer. Based on these axioms the system can derive the 
additional information that a gelatin nanoparticle is a polymeric nanoparticle, which is also shown on the 
right-hand side of Figure 2 (under ‘SubClass Of’). Figure 3 shows the actual OWL representation for the 
concepts gelatin nanoparticle, polymeric nanoparticle and nanoparticle.

Figure 3: Example from NanoParticle Ontology – OWL/XML Syntax Format.

http://www.w3.org/TR/owl2-overview/


Li et al: A Method for Extending Ontologies with Application to the 
Materials Science Domain

Art. 50, page 5 of 21

2.2 Ontologies in materials domain
Within the materials domain the use of semantic technologies is in its infancy with the development of 
ontologies and standards. According to (Zhang, Zhao & Wang 2015) domain ontologies have been used to 
organize materials knowledge in a formal language, as a global conceptualization for materials information 
integration (e.g. (Cheng et al. 2014)), for linked materials data publishing, for inference support for discover-
ing new materials and for semantic query support (e.g., (Zhang, Luo, Zhao & Zhang 2015, Zhang et al. 2017)). 
Most ontologies focus on specific sub-domains of the materials field (e.g., metals, ceramics, thermal proper-
ties, nanotechnology) and have been developed with a specific use in mind (e.g., search, data integration, 
discovery). Some examples of ontologies are the Materials Ontology (Ashino 2010) for data exchange among 
thermal property databases, PREMΛP ontology (Bhat et al. 2013) for steel mill products, MatOnto ontology 
(Cheung et al. 2008) for oxygen ion conducting materials in the fuel cell domain, and the FreeClassOWL 
ontology (Radinger et al. 2013) for the construction and building materials domain. An ontology design 
pattern regarding material transformations was proposed in (Vardeman II et al. 2017). Since recently, the 
European Materials Modelling Council is developing the European Materials Modelling Ontology (European 
Materials Modelling Council 2017).

In the sub-field of nanotechnology, the NanoParticle Ontology (Thomas et al. 2011) was created for 
understanding biological properties of nanomaterials, searching for nanoparticle relevant data and 
designing nanoparticles. It builds on the Basic Formal Ontology (BFO, http://basic-formal-ontology.org/) 
(Arp et al. 2015) and Chemical Entities of Biological Interest Ontology (ChEBI) (de Matos et al. 2010) 
to represent basic knowledge regarding physical, chemical and functional features of nanotechnology 
used in cancer diagnosis and therapy. The eNanoMapper ontology (Hastings et al. 2015) aims to inte-
grate a number of ontologies such as the NanoParticle Ontology for assessing risks related to the use of 
nanomaterials.

Furthermore, standards for exporting data from databases and between tools are being developed. These 
standards provide a way to exchange data between databases and tools, even if the internal representations 
of the data in the databases and tools are different. They are a prerequisite for efficient materials data infra-
structures that allow for the discovery of new materials (Austin 2016).

In several cases the standards formalize the description of materials knowledge and thereby create 
ontological knowledge. For instance, one effort is by the European Committee for Standardization which 
organized workshops on standards for materials engineering data of which the results are documented in 
(European Committee for Standardization 2010). Another recent effort is connected to the European Centre 
of Excellence NOMAD (Ghiringhelli et al. 2016).

2.3 Extending ontologies from unstructured text
The ontology extension problem that we tackle deals mainly with concept discovery and concept hierarchy 
derivation. These are also two of the tasks in the problem of ontology learning (Buitelaar et al. 2005). 
Therefore, most of the related work comes from that area. For instance, a recent survey (Asim et al. 2018) 
discusses 140 research papers. Different techniques can be used for concept and relationship extraction. In 
this setting, new ontology elements are derived from text using knowledge acquisition techniques.

Linguistic techniques use part-of-speech tagged corpora for extracting syntactic structures that are ana-
lyzed regarding the words and the modifiers contained in the structure. One kind of linguistic approach 
is based on linguistics using lexico-syntactic patterns. The pioneering research conducted in this line is 
in (Hearst 1992), which defines a set of patterns indicating is-a relationships between words in the text. 
Other linguistic approaches may make use of, for instance, compounding, the use of background and 
itemization, term co-occurrence analysis or superstring prediction (e.g. (Wächter et al. 2006, Arnold & 
Rahm 2013)).

Another paradigm is based on machine learning and statistical methods which use the statistics of the 
underlying corpora, such as k-nearest neighbors approach (Maedche et al. 2003), association rules (Maedche 
& Staab 2000), bottom-up hierarchical clustering techniques (Zavitsanos et al. 2007), supervised classifi-
cation (Spiliopoulos et al. 2010) and formal concept analysis (Cimiano et al. 2005). There are also some 
approaches that use topic models (Schaal et al. 2005, Lin et al. 2012, Rani et al. 2017) but they focus on 
concept names that are words, rather than phrases as in our approach.

Ontology evolution approaches (Hartung et al. 2011, Dos Reis et al. 2013) allow for the study of changes 
in ontologies and using the change management mechanisms to detect candidate missing relations. An 
approach that allows for detection and user-guided completion of the is-a structure is given in (Ivanova 
& Lambrix 2013, Lambrix et al. 2015) where completion is formalized as an abduction problem and the 
RepOSE tool is presented.

http://basic-formal-ontology.org/
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3 Approach
Our approach for extending ontologies, shown in Figure 4, contains the following steps. In the first 
step, creation of a phrase-based topic model, documents related to the domain of interest are used to 
create topics. The phrases as well as the topics are suggestions that a domain expert should validate or 
interpret and relate to concepts in the ontology. In the second step the (possibly validated and updated) 
topics are used in a formal topical concept analysis which returns suggestions to the domain expert 
regarding relations between topics and thus concepts in the ontology. Both steps lead to the addition 
of new concepts and (subsumption) axioms to the ontology. In the following subsections we describe 
these steps.

3.1 Phrase-based Topic Model
In our first step we use the phrases-based topic model in the ToPMine system (El-Kishky et al. 2014). Given 
a corpus of documents and the number of requested topics, representations of latent topics in the docu-
ments are computed. Essentially, topics can be seen as a probability distribution over words or phrases. The 
ToPMine approach is purely data-driven, i.e., it does not require domain knowledge or specific linguistic rule 
sets. This is important for our application domain as there is a lack of annotated background knowledge. 
An important property of the system is that it works on bags-of-phrases, rather than the traditional bag-
of-words. This means that words occurring closer together have more weight than words far away. Further, 
as we assume existing ontologies, it is very likely that concepts with one-word names are already in the 
ontology and we therefore focus on phrases.

The approach consists of two parts: phrase mining and topic modelling. In the first part frequent contigu-
ous phrases are mined, which consists of collecting aggregate counts for all contiguous words satisfying a 
minimum support threshold. Then the documents are segmented based on the frequent phrases. Further, 
an agglomerative phrase construction algorithm merges the frequent phrases guided by a significance score. 
In the second part topics are generated using a variant of Latent Dirichlet Allocation, called PhraseLDA, that 
deals with phrases, rather than words.

3.2 Formal Topical Concept Analysis
In the second step we define a new variant of Formal Concept Analysis (e.g., (Ganter & Wille 2012)) and use 
this new variant on topics. These topics can come directly from the previous step or can be a modified ver-
sion of the topics of the previous step, where non-relevant topics or phrases are removed.

We first define the notions of formal topical context, formal topical concept and topical concept lattice. 
(Note that formal topical concepts should not be confused with concepts in the ontologies.)

Figure 4: Approach: The upper part of the Figure shows the creation of a phrase-based topic model with as 
input unstructured text and as output phrases and topics. The lower part shows the formal topical con-
cept analysis with as input topics and as output a topical concept lattice. In both parts a domain expert 
validates and interprets the results.
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Definition 1. (Formal Topical Context) A formal topical context is a triple (P, T, I) where P is a set phrases, T is 
a set topics, and I is a binary relation between P and T (I ⊆ P × T).

Definition 2. (Formal Topical Concept) (A, B) is a formal topical concept of (P, T, I) iff A ⊆ P, B ⊆ T, A′ = B, B′ 
= A where A′ : = {t ∈ T | ∀p ∈ A : < p, t > ∈ I} and B′ : = {p ∈ P | ∀t ∈ B : < p, t > ∈ I }. A is the extent and B is 
the intent of (A, B).

Definition 3. (Topical Concept Lattice) Topical formal concepts can be ordered. We say that (A1, B1) ≤ 
(A2, B2) iff A1 ⊆ A2. The set Φ(P, T, I) of all formal topical concepts of (P, T, I), with this order, is called the topical 
concept lattice of (P, T, I).

As an example, in Figure 5(a) we show a matrix representing the occurrence of phrases in topics in a topic 
model, the resulting formal topical concepts in Figure 5(c) and the topical concept lattice in Figure 5(b). 
In the lattice a node represents a formal topical concept (same numbering as in Figure 5(a)). For a for-
mal topical concept (A, B), its extent (phrases) is found by collecting all phrases in its node as well as its 
descendants. The intent (topics) is found by collecting all topics in its node as well as its ancestors.

3.3 Domain Expert Validation
As shown in Figure 4, a domain expert is involved in the different steps in our approach to validate and 
interpret the results of the phrase-based topic model and the formal topical concept analysis.

The domain expert validates or interprets all phrases that appear in all topics. The outcome can be one 
of the following:

(i)	 The phrase is a meaningful representation of a concept in the specific domain and it is already 
in the ontology. For example, gold nanoparticle is a specific concept within the nanotechnol-
ogy domain and it is already in the NanoParticle Ontology. We distinguish two cases: (1) a 
concept with the same name or a name that is a synonym of the original form of the phrase 
already exists in the ontology (EXIST) or (2) a concept with a name that is a modified form of 
the phrase already exists in the ontology (EXIST-m).

(ii)	 The phrase is a meaningful representation of a concept in the specific domain but it is not in 
the ontology. For example, microcrystalline silicon is a meaningful representation of a concept 
but such concept does not exist in the ontology. We distinguish two cases: (1) a concept with 
the same name as the original form of the phrase should be added into the ontology (ADD) or 
(2) a concept with as name a modified form of the phrase should be added into the ontology 
(ADD-m).

Figure 5: Examples of (a) phrase occurrences in topics, (b) Formal Topical Concept Lattice and (c) Formal 
Topical Concepts.
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(iii)	 No concept related to the phrase should be added to the ontology. This can happen because 
the phrase does not make sense in the domain (No), but also because it is a meaningful rep-
resentation of a concept in a more general domain (No-g). For example, electron transfer is a 
general concept within the perspective in materials science, but should not necessarily be in 
a nanotechnology ontology.

A second interaction with the domain expert occurs in the interpretation of topics. The outcome can be 
one of the following:

(i)	 Using the representative phrases in a topic, the domain expert labels the topic. Using this label 
as a phrase, we have the outcomes EXIST, EXIST-m, ADD, ADD-m, No-g and No, as above. Fur-
thermore, we add an outcome Q (for query) when the label for the topic is too specific for add-
ing to the ontology, but could be defined using concepts in the ontologies and OWL constructs.

(ii)	 Using a subset of representative phrases in a topic, the domain expert labels the subset. Using 
this label as a phrase, we have the outcomes EXIST, EXIST-m, ADD, ADD-m, No-g, No, and Q as 
above. This can be done for different subsets.

Finally, the domain expert interprets the lattice.

(i)	 Given the relationships in the lattice, as well as the connections of the topics and phrases to 
concepts in the ontology, new relationships between ontology concepts can be identified.

4 Extending NanoParticle and eNanoMapper Ontologies
In the following subsections, we show the usefulness of our approach by extending two ontologies in the 
nanotechnology domain.

4.1 Corpus and ontologies
The corpus that we use is based on reports on nanoparticles from the Nanoparticle Information Library 
(http://nanoparticlelibrary.net). For each nanoparticle report, we take the text in ‘Research Abstract’ as 
well as the abstracts (or only the titles if there is no abstract) from the publications in ‘Related Publications’. 
The final corpus contains 117 abstracts from the ‘Research Abstract’ field in the reports and 510 abstracts 
(or titles) from publications. We have chosen to only retrieve titles and abstracts rather than full texts. The 
title and abstract cover the basic content of an article. For a research article in the materials science domain 
they will generally contain a summary of the problem, experiments, simulations and computations. As the 
ontologies aim to represent basic knowledge in the domain, these parts of a research article often contain 
enough information for extraction of concepts. When using the full text, more proposals for concepts may 
be generated, but many of those will not be relevant. In related fields, it has been shown that the use of 
titles (and abstracts) may be a reasonable approach (e.g., (Galke et al. 2017)).

The ontologies that we extend are the NanoParticle Ontology (Thomas et al. 2011) (1904 concepts and 
81 relations) and the eNanoMapper ontology (Hastings et al. 2015) (12,531 concepts and 4 relations). Both 
ontologies are available via BioPortal (https://bioportal.bioontology.org/).

4.2 Experiments Setup
In our experiments, we configure the phrases mining threshold with two values (high and low), and the 
PhraseLDA with different numbers of requested topics (20, 30 and 40). The other parameters of PhraseLDA 
are set as follows: the total number of Gibbs sampling iterations over the entire data is 1000, the hyper-
parameters are α = 50/T and β = 0.01 where T is the number of topics. These initial values for the 
hyper-parameters are justified in (Steyvers & Griffiths 2007). Thus we have six experiments over the data.

After the interpretation of the phrases by the domain expert, for each setting, all (rows regarding) phrases 
interpreted with No are removed from the phrase occurrence matrix. The updated matrix (with all EXIST(-m), 
ADD(-m) and No-g phrases) are used as input for the formal topical concept analysis and a formal topical 
concept lattice is generated.

For the interpretation of the phrases, topics and lattice results a domain expert (second author) worked 
together with two ontology engineering experts (first and third author). In a first 2 hour session the three 
experts went through the phrases of all topics for one of the settings (low mining threshold, 40 topics) of the 
topic model approach. Each phrase was discussed regarding whether it was relevant for a nanotechnology 
ontology, checked whether concepts with the same or similar names existed in the NanoParticle Ontology, 

http://nanoparticlelibrary.net
https://bioportal.bioontology.org/
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and a decision was made regarding EXIST(-m)/ADD(-m)/No(-g) as well as which axioms may be needed 
to add to the ontology. In addition to investigating the ontologies, in some cases terms were checked via 
wikipedia or research articles. As a preparation for the second session, the knowledge engineers prepared 
suggestions for the phrases for the other settings, based on the interpretation results of the first session 
and search in the two ontologies. During the second session (4 hours) the phrases for all settings were 
interpreted and related to both ontologies. Further, the topics for one setting were interpreted. In the third 
(2 hour) session the remaining topics as well as the lattice results were interpreted.

4.3 Results and discussion of results
In Table 1 we show the results regarding the interpretation of the phrases. In addition to the number of 
concepts in the EXISTS(-m), ADD(-m), and No(-g) categories, we also show the precision. The precision of the 
system is the ratio of the number of relevant proposed concepts to the number of proposed concepts. We 
decided to define a relevant proposed concept as a proposed concept that the domain expert recognizes as 
a relevant concept, whether it be in the ontology, or more specific than concepts in the ontology, or could 
belong to a more general ontology. Therefore, the relevant proposed concepts are the ones that do not 
belong to the ‘No’ category. This conforms to what is relevant in the ontology learning setting.

We note that some phrases may contribute to the addition of multiple concepts and axioms. Furthermore, 
the low mining threshold settings generate the most number of phrases (in total and per topic). Except for 
one ‘No’ phrase, all phrases generated by any of the high mining threshold settings are also generated by 
at least one (and usually all) low mining threshold settings. For the low mining threshold settings there 
are only small differences regarding the phrases that occur in topics. There are 29 phrases that are gener-
ated by all settings. Of these do 13 exist in the ontologies and relate, among others, to kinds of nanotubes, 
microscopy, spectroscopy, and various properties of nanoparticles. Furthermore, 7 exist in a modified form, 
e.g., temperature for low/high/room temperature and core-shell nanoparticle for the phrase core shell. The 
remaining 9 should be added to the ontologies in the same or modified form. These relate to properties 
(resolution, pore size, band gap, electrical conductivity, crystallinity), a technique (vapor deposition) and 
nano-objects (mesoporous silica nanoparticle, thin film). Reverse micelle-synthesized quantum dot leads 
to the creation of a specific kind of quantum dots as well as a specific synthesis technique. Regarding the 
phrases that are only found by low mining threshold settings, they relate to different kinds of silicons, nano-
particles, properties and techniques, of which many should be added to the ontologies. There are, however, 
also several phrases that relate to more general concepts in the materials domain that should not necessarily 
be added to an ontology in the nanotechnology domain. In all settings, we find most EXIST(-m) cases, which 
shows that the phrases are relevant with respect to the existing ontologies. Furthermore, we found many 
ADD(-m) cases which lead to new concepts and axioms. There are also some phrases that relate to more 
general concepts and some phrases that do not lead to anything meaningful in the context of extending 

Table 1: Result of interpreting phrases. The first column defines the case using the number of topics, low or 
high mining threshold, and ontology. The precision is truncated.

ADD ADD-m EXIST EXIST-m No-g No precision

20, low, NanoParticle 32 4 26 19 16 9 0.91

20, low, eNanoMapper 29 3 24 25 14 12 0.88

30, low, NanoParticle 30 4 26 18 16 9 0.91

30, low, eNanoMapper 28 3 24 26 12 11 0.89

40, low, NanoParticle 32 4 26 15 16 10 0.90

40, low, eNanoMapper 29 3 24 22 14 12 0.88

20, high, NanoParticle 9 1 14 7 4 0 1.00

20, high, eNanoMapper 8 2 12 10 3 0 1.00

30, high, NanoParticle 8 2 14 8 0 1 0.96

30, high, eNanoMapper 7 1 12 10 0 1 0.96

40, high, NanoParticle 9 2 14 12 4 4 0.91

40, high, eNanoMapper 9 2 12 14 2 4 0.90

For the meanings of ADD(-m), EXIST(-m) and No(-g), see Section 3.3.
For ADD and ADD-m, a new concept is defined in the ontology and one or more subsumption axioms are added.
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the ontology. From Table 2 we note that the more topics the system generates, the lower the percentage of 
topics that contribute to EXIST(-m) and ADD(-m) categories.

In Table 3 we show the results regarding the interpretation of the topics. We note that the high mining 
threshold settings generate the most concepts to add to the ontologies. In each setting there are one or two 
concepts that were not found during the interpretation of the phrases (e.g., high resolution experiment, 
water soluble reverse micelle systems, core-shell semiconductors). All EXIST(-m) concepts were also found 
during the interpretation of the phrases. The No-g category consists of earlier found phrases or specializa-
tions of those. Furthermore, many of the topics are very specific and it was decided they should not be added 
to the ontology, but queries (or complex concepts) using concepts in the ontologies and OWL constructs can 
be constructed. We also observe that the results for the two ontologies are almost the same, which may be 
because the topic labels are (much) more specific than the phrase labels and the ontologies do not model 
concepts at the lowest levels of specificity.

In the final step we generated lattices for all settings. As an example, a part of the lattice for the case of 
40 requested topics with a low mining threshold is shown in Figure 6. Nodes that contain one topic/one 

Table 2: The number (and truncated percentage in parentheses) of topics that contribute to extending the 
ontologies. The first column defines the case using the number of topics, low or high mining threshold, 
and ontology.

Contribute to 
ADD and ADD-m

Contribute to 
EXIST and EXIST-m

Contribute 
to No-g

20, low, NanoParticle 18 (90.0%) 16 (80.0%) 6 (30.0%)

20, low, eNanoMapper 18 (90.0%) 16 (80.0%) 5 (40.0%)

20, high, NanoParticle 11 (55.0%) 13 (65.0%) 3 (15.0%)

20, high, eNanoMapper 11 (55.0%) 13 (65.0%) 2 (10.0%)

30, low, NanoParticle 19 (63.0%) 19 (63.0%) 11 (36.6%)

30, low, eNanoMapper 18 (60.0%) 20 (66.6%) 11 (36.6%)

30, high, NanoParticle 10 (33.3%) 19 (63.3%) 3 (10.0%)

30, high, eNanoMapper 9 (30.0%) 20 (66.6%) 2 (6.6%)

40, low, NanoParticle 22 (55.0%) 21 (52.5%) 12 (30.0%)

40, low, eNanoMapper 21 (52.5%) 23 (57.5%) 9 (22.5%)

40, high, NanoParticle 13 (32.5%) 16 (40.0%) 4 (10.0%)

40, high, eNanoMapper 12 (30.0%) 18 (45.0%) 3 (7.5%)

Table 3: Result of interpreting topics. The first column defines the case using the number of topics, low or 
high mining threshold, and ontology. Note that some topics may be empty and some topics may require 
several concepts. The values in parentheses show the number of added concepts that were not found in 
the phrase interpretation phase.

ADD ADD-m EXIST EXIST-m No-g Q No precision

20, low, both 3(1) 0 2 0 1 13 0 1.00

30, low, both 8(2) 0 4 0 1 13 0 1.00

40, low, both 16(1) 0 11 1 2 10 5 0.88

20, high, both 8(1) 0 3 2 0 7 0 1.00

30, high, both 3(2) 0 10 2 0 7 0 1.00

40, high, NanoParticle 10(2) 0 10 3 2 3 2 0.93

40, high, eNanoMapper 10(2) 0 9 4 2 3 2 0.93

For the meanings of ADD(-m), EXIST(-m), No(-g) and Q, see Section 3.3.
For ADD and ADD-m, a new concept is defined in the ontology and one or more subsumption axioms are added.
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phrase and have as child the bottom node and as parent the top node are not shown. These have been 
dealt with in the phrase interpretation step and as there are no connections to other nodes (except top 
and bottom), no additional information can be gained for those nodes.

The lattices were used in the following ways. First, the domain expert labeled the nodes based on the 
phrases connected to the nodes. These may be the extents or subsets of the extents of topics. The results are 
given in Table 4. Some new concepts were found that are more general than concepts related to topics (e.g., 
core-shell cdse nanoparticles), but in general, few additional information was found.

Secondly, the domain expert labeled the nodes based on the phrases connected to the nodes and their 
descendants. As a node contains less phrases than all its ancestors, a labeling may lead to the definition of 
a new concept that is a super-concept of the concepts related to the ancestor topics (and relevant axioms). 
As, according to the topic interpretation step, many topics are very specific, this approach may give a way 
to decide on the appropriate level of specificity for concepts to add to the ontology. In our experiments, 
however, the lattices were very flat and the nodes with empty intent contained only one phrase and thus 
did not lead to additional concepts.

Thirdly, the domain expert used the lattice as a visualization tool to check the original topic interpreta-
tion. According to the domain expert, the use of the lattice provides significant help in interpreting the 
topics. As it groups phrases that are in common between different topics and distinguishes phrases that 
are specific for certain topics, the structure of complex concepts (based on other concepts) is clarified. It 
results in a better organization and visualization of the topics and their underlying notions. For instance, 
for a topic with phrases ‘particle size’, ‘quantum dot’, and ‘gold nanoparticle’, the phrase ‘particle size’ 
was in common with another topic. By removing ‘particle size’ from the phrase list of the topic, it was 
easier to see that the topic was a combination of ‘particle size’ and a notion of ‘quantum dots of gold 
nanoparticles’.

Figure 6: Part of the lattice for the 40 topics and low mining threshold setting. Nodes that contain one 
topic/one phrase and have as child the bottom node and as parent the top node are not shown.

Table 4: Result of interpreting lattice nodes. The first column defines the case using the number of topics, 
low or high mining threshold, and ontology. The values in parentheses show the number of added 
concepts that were not found in the phrase or topic interpretation phases.

ADD ADD-m EXIST EXIST-m No-g Q No precision

20, low, both 1(0) 0 1 0 2 0 0 1.00

30, low, NanoParticle 4(2) 0 3 0 1 0 0 1.00

30, low, eNanoMapper 3(2) 0 4 0 1 0 0 1.00

40, low, both 3(0) 0 1 0 0 0 0 1.00

20, high, both 0(0) 0 1 0 1 1 0 1.00

30, high, both 1(1) 0 1 0 0 0 0 1.00

40, high, both 0(0) 0 0 0 0 0 0 1.00

For the meanings of ADD(-m), EXIST(-m), No(-g) and Q, see Section 3.3.
For ADD a new concept is defined in the ontology and one or more subsumption axioms are added.
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4.4 General discussion
For the experiments we have currently used few resources, i.e. circa 600 abstracts and less than 10 hours for 
each of the three experts. Even with these limited resources our approach finds 35 and 32 new concepts for 
the NanoParticle Ontology and the eNanoMapper ontology, respectively as shown in Table 5, as well as 42 
and 37 new axioms, respectively, as shown in Table 6. In addition to the new concepts and new axioms, also 
other concepts are influenced. Indeed, for a new axiom A is-a B, the sub-concepts of A receive B and all its 
super-concepts as its super-concepts (and thus inherit their properties), and all super-concepts of B receive 
A and its sub-concepts as sub-concepts (and thus all instances of these concepts are also instances of B and 

Table 5: New concepts for the NanoParticle and eNanoMapper ontologies.

Concepts NanoParticle eNanoMapper

amorphous silicon 

band gap 

Barium Titanate  

block copolymer  

copolymer  

polymer 

CdSe nanocrystal  

CdTe nanoparticle  

copper nanoparticle 

conductivity  

electrical  

gold nanorod  

growth mechanism  

resolution  

layer by layer growth  

liquid solid 

pressure 

MCM 41  

mechanical property  

viscosity 

melt spin  

mesoporous silica nanoparticle  

mesoporous silica nanosphere  

microcrystalline silicon  

optical property 

polymorphous silicon  

pore size 

porous silicon  

quantum confinement  

reverse micelle-type quantum dot  

semiconductor nanocrystal  

nanocrystal  

silicon thin film  

thin film  

crystallinity  

thermal conductivity  

tunnel spectroscopy  

ZnO nanowire  

35 32
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Table 6: New axioms for the NanoParticle and eNanoMapper ontologies.

Axioms NanoParticle eNanoMapper

amorphous silicon is a silicon 

band gap is a quality 

Barium Titanate is an inorganic compound or molecule 

Barium Titanate is a chemical substance 

block copolymer is a copolymer  

copolymer is a polymer  

polymer is an organic material 

CdSe nanocrystal is a nanocrystal  

CdTe nanoparticle is a nanoparticle  

copper nanoparticle is a metal nanoparticle 

conductivity is an independent general individual quality 

conductivity is a quality 

electrical conductivity is a conductivity  

gold nanorod is a nanorod  

growth mechanism is a process  

resolution is an independent general individual quality 

resolution is a quality 

layer by layer growth is a mechanism process  

liquid solid is a liquid solid interface 

pressure is an independent general individual quality 

MCM 41 is a mesoporous silica nanoparticle  

mechanical property is a realizable entity 

mechanical property is a quality 

viscosity is a mechanical property  

melt spin is a technique  

mesoporous silica nanoparticle is a nanoparticle  

mesoporous silica nanosphere is a nanosphere  

microcrystalline silicon is a silicon 

microcrystalline silicon is a chemical substance 

nanotube array has part nanotube  

optical property is a property 

polymorphous silicon is a silicon 

polymorphous silicon is a chemical substance 

pore size is a nanoparticle property 

porous silicon is a silicon 

porous silicon is a chemical substance 

raman scatter is a synonym of raman spectroscopy  

quantum confinement  

reverse micelle-type quantum dot is a quantum dot  

semiconductor nanocrystal is a semiconductor and is a nanocrystal  

nanocrystal is a nano-object and is a crystal  

silicon thin film is a thin film  

thin film is a fiat material part and one-dimensional nano-object  

crystallinity is an independent general individual quality  

crystallinity is a quality 

transition metal is a synonym of transition element  

(Contd.)
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its super-concepts). In this experiment, 72 concepts from NanoParticle Ontology are influenced by the new 
axioms. Therefore, the quality of semantically-enabled applications is improved whenever one of the 35 new 
or 72 influenced concepts is used. For the eNanoMapper ontology the number of influenced existing con-
cepts by adding new axioms is 37. In general, if domain and range are used for the definition of relations in 
the ontologies, even more concepts would be influenced. Thus, adding these axioms improves the quality of 
the ontologies and the semantically-enabled applications that use these ontologies. It is clear that the effort 
for extending the ontologies is worth-while.

The current corpus is mainly related to the themes of Chemical synthesis, Engine Emissions, Flame 
Combustion, and Furnace Emissions. A larger corpus would allow us to find more concepts and axioms as 
well as extend the coverage, i.e., larger parts of the ontologies could be extended.

Our results show that the approach generates many EXIST(-m) cases. This provides a sanity check for our 
approach as it shows that existing concepts can be found. In a future system we may want to filter out 
suggestions by checking the existence of the term or a similar term in the ontologies before showing the 
domain expert. This may lead to less unnecessary validation work for the domain expert as EXIST(-m) cases 
would be removed. However, this may also lead to missing some new concepts as the terms used in different 
ontologies may not always mean the same. For instance, in (Ivanova et al. 2012) it was shown that ‘metabo-
lism’ in MeSH has a different meaning than ‘metabolism’ in ToxOntology. Therefore, only using (approxi-
mate) string matching and using synonyms may not be enough to filter out EXIST(-m) cases.

For the domain expert it was easier to interpret and label the topics for the settings with high mining 
thresholds. As mentioned, the number of phrases for topics for the low mining threshold settings is larger 
than for the high mining threshold settings. Often the topics for the low mining thresholds contained 
too many phrases to easily interpret the topic. In an extreme case, the domain expert thought that a topic 
“looked like the subject of a particular research article”.

One issue that the domain expert noted was that it was not always easy to decide which level of granular-
ity to use during the interpretation. The question is how specific or how general the interpretation could be 
and still make sense for the ontology. Although our approach gives much flexibility in this sense, it does give 
much responsibility to the domain expert and some way to automate recommendations would be helpful. 
Another related issue is the fact that we found several concepts that were too general for the nanotechnol-
ogy domain, but that are still relevant. In this case we did not add these to the ontology, but one may reflect 
on how to deal with this issue, e.g., by importing or linking to other ontologies.

In this experiment we did not find cases where the lattice was in conflict with the ontologies. In our 
method the domain expert is involved in interpreting the lattice. Therefore, if there would be a conflict 
between the domain expert’s validation and the ontologies, there are two possibilities. First, it is possible 
that the domain expert made a mistake, and by observing the conflict could rectify the mistake. Second, 
there may be a mistake in the ontologies. By observing the conflict, we now have an opportunity for debug-
ging the ontology using specialized tools (e.g., (Lambrix 2019).

4.5 Comparison to Other Approaches
Literature As mentioned before, we are mainly dealing with concept discovery and concept hierarchy deri-
vations. As these are also two tasks in ontology learning, we find most related work in that area. While we 
addressed different methods in Section 2.3, in this section we address systems. A number of ontology learning 
systems generate concepts. Examples are ASIUM (Faure & Poibeau 2000), CRCTOL (Jiang & Tan 2010), OntoGain 
(Drymonas et al. 2010), OntoLearn (Navigli et al. 2004) and Text2Onto (Cimiano & Völker 2005). ASIUM applies 
linguistics-based sentence parsing, syntactic structure analysis, and sub-categorization frames to return con-
cepts. CRCTOL implements both linguistics-based methods and relevance analysis. OntoGain extracts concepts 
by using linguistics-based part-of-speech tagging, shallow parsing, and relevance analysis. OntoLearn gener-

Axioms NanoParticle eNanoMapper

thermal conductivity is a conductivity  

tunnel spectroscopy is a spectroscopy  

scanning tunneling spectroscopy is same as tunnel spectroscopy  

chemical vapor disposition is a vapor disposition  

physical vapor disposition is a vapor disposition  

ZnO nanowire is a nanowire  

42 37
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ates concepts based on the concepts and glossary from WordNet. Finally, Text2Onto uses statistics-based co-
occurrence analysis. We show the performance of these five systems in Table 7 according to (Wong et al. 2012).

Experiment with Text2Onto To compare our approach with another system, we have chosen to experi-
ment with Text2Onto (Cimiano & Völker 2005). It was the only system that we found that we could download 
and install. However, it is one of the most popular and well-known ontology learning systems and therefore 
a good choice. Text2Onto is an ontology learning system based on mining textual resources. For extract-
ing concepts from the textual resource, Text2Onto implements four algorithms which are entropy-based, 
C-value/NC-value-based, relative term frequency-based, and term frequency-based and inverted document 
frequency (TF-IDF)-based respectively. As shown above, it performed well in different domains.

In this experiment, we use Text2Onto on the same corpus as in the experiment for our approach. We split 
the corpus into segments as Text2Onto uses too much memory when applied on the whole corpus. We apply 
Text2Onto with default settings for its four algorithms on our corpus. For each of the settings, Text2Onto 
returns thousands of candidates ranked based on relevance. We apply the same domain expert validation 
as in our method in terms of interpreting phrases presented in Section 3.3. Instead of using the complete 
ranked lists of thousands of proposed concepts, we decided to investigate the results of the sub-lists con-
taining the 100, 200, 300 and 400 top elements in the lists, respectively. The results are shown in Table 8. 
The entropy-based and C-Value/NC-Value-based methods return exactly the same results. For the relative 

Table 7: Performance of ontology learning systems in different domains (Wong et al. 2012). (Precision 
is truncated).

System Domain Precision

ASIUM French journal Le Monde 0.86

CRCTOL Patterns of Global Terrorism 0.92

OntoGain Computer Science corpus 0.86

Medical corpus 0.89

OntoLearn Tourism 0.85

Text2Onto Text from the paper (Navigli & Velardi 2004) 0.61

Patterns of Global Terrorism 0.74

Table 8: The results of Text2Onto with different algorithms and different number of returned candidates. 
(Precision is truncated).

# of elements Algorithm ADD ADD-m EXIST EXIST-m No-g No precision

100 Entropy 5 0 39 19 4 33 0.67

C-value/NC-value 5 0 39 19 4 33 0.67

Relative term frequency 5 0 39 20 4 32 0.68

TF-IDF 17 0 22 12 6 43 0.57

200 Entropy 7 1 63 43 8 79 0.60

C-value/NC-value 7 1 63 43 7 79 0.60

Relative term frequency 7 1 63 42 8 79 0.60

TF-IDF 24 1 38 19 19 99 0.50

300 Entropy 12 1 80 52 16 139 0.53

C-value/NC-value 12 1 80 52 16 139 0.53

Relative term frequency 13 1 78 52 16 140 0.53

TF-IDF 28 1 58 36 29 148 0.50

400 Entropy 18 1 98 62 20 199 0.50

C-value/NC-value 18 1 98 62 20 199 0.50

Relative term frequency 19 1 100 61 20 199 0.50

TF-IDF 36 1 70 44 38 211 0.47
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term frequency-based method the 160 highest ranked proposed concepts are the same as the 160 highest 
ranked proposed concepts for the entropy-based and C-Value/NC-Value-based methods. The precision for 
the entropy-based and C-Value/NC-Value-based methods is the highest for each fixed number of proposed 
concepts, closely followed by the relative term frequency-based method. The TF-IDF-based method has the 
lowest precision. However, the TF-IDF-based method finds the largest number of relevant new concepts 
(ADD(-m)). Further, the precision decreases and the number of relevant new concepts increases for all algo-
rithms, when we take larger sub-lists of top elements.

In Table 9, we show the results for Text2Onto when all algorithms are used together for the different sub-
lists of top elements and compare it to our method. In Table 10 we show all the new concepts found by our 
method and Text2Onto for NanoParticle Ontology. 14 concepts were found by both methods. Further, our 
method found 21 new concepts that were not found by Text2Onto, while Text2Onto found 28 new concepts 
that were not found by our method. The two methods seem therefore to be complementary.

Table 9: Results for Text2Onto using all algorithms per setting and our method for extending NanoParticle 
Ontology. (Precision is truncated).

ADD ADD-m EXIST EXIST-m No-g No precision

Text2Onto-100 20 0 51 27 11 71 0.60

Text2Onto-200 29 1 84 55 26 164 0.54

Text2Onto-300 39 1 118 78 44 266 0.51

Text2Onto-400 41 1 120 73 47 313 0.47

Our Method 32 3 25 18 14 22 0.80

Table 10: New concepts found by our method and Text2Onto for the NanoParticle Ontology.

Concepts Our method Text2Onto

acid group 

activation energy 

amorphous silicon 

band gap  

Barium Titanate  

Barium Titante nanowire 

block copolymer  

boron nanowire 

catalyst 

cluster 

copolymer  

crystallite 

crystallinity 

CdSe nanocrystal 

CdTe nanoparticle 

copper nanoparticle  

conductivity  

diblock copolymer 

electrical conductivity 

esterification 

ethylene oxide 

gold nanorod  

(Contd.)
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Concepts Our method Text2Onto

growth mechanism  

intensity 

resolution 

layer by layer growth 

liquid solid 

pressure 

MCM 41 

mechanical property 

melting 

melt spin 

mesoporous silica nanoparticle 

mesoporous silica nanosphere 

microcrystalline silicon  

nano colloid 

nano composite 

nanocrystal  

nano crystalline silicon particle 

nanogrid 

nano ribbon 

nanotube array  

nanowire array 

oxidation 

photo activity 

polyelectrolyte 

polymorphous silicon 

pore size  

porous silicon 

pressure P

quantum confinement  

reverse micelle-type quantum dot 

semiconductor nanocrystal  

silicon thin film 

silica nanosphere 

silicon nanowire 

silicon nanowire array 

superlattice nanowire 

thin film 

titanium nanotube 

thermal conductivity 

tunnel spectroscopy 

ZnO nanowire 

35 42
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5 Conclusions and Future Work
In this paper we have used a phrase-based topic model approach and introduced a formal topical concept 
analysis for extending ontologies. A domain expert interprets the results which are phrases, topics and a lat-
tice. This leads to the confirmation of ontological concepts (EXIST(-m)) or to the addition of new concepts 
and axioms (ADD(-m)). The latter is the actual extension of the ontologies. Also, concepts from more general 
or other domains may be found, as well as very specific concepts in the domain that need not be added to 
the ontology. We have shown the usefulness of the approach by extending two ontologies in the nanotech-
nology domain using approximately 600 abstracts.

In the future we will investigate how to help the domain expert dealing with the granularity issue. In 
particular, the topical concept lattice explored in this work appears to help refining topics into classifiers 
of content that are more general and meaningful in the domain. This may be a useful step forward towards 
a higher level of automation in the process of extracting ontology information out of unstructured text. 
Furthermore, we will investigate the scalability of our approach by experimenting with more documents. 
Another possible direction is to investigate synergy possibilities between the topics and the ontology con-
cepts, e.g., by using the ontologies to generate the corpora, or by iterating between topic generation and 
interpretation.
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