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ABSTRACT 
 
An alternative ratio-cum-product estimator of population mean using the coefficient of kurtosis for two auxiliary 
variates has been proposed. The proposed estimator has been compared with a simple mean estimator, the usual 
ratio estimator, a product estimator, and estimators proposed by Singh (1967) and Singh et al. (2004). An empirical 
study is also carried out in support of the theoretical findings.  
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1 INTRODUCTION  
 
The use of known parameters for auxiliary variates has played an important role in improving the efficiencies of 
estimators. Sisodiya and Dwivedi (1981) used the coefficient of variation for auxiliary variates. Later, Singh et al. 
(2004) used the coefficient of kurtosis for auxiliary variates. Upadhyaya and Singh (1999) derived ratio and product 
type estimators using both a coefficient of variation and a coefficient of kurtosis for auxiliary variates. Singh (1967) 
utilized information on two auxiliary variates 1x and 2x and suggested a ratio-cum-product estimator for population 
mean. This paper is an attempt to study the use of a coefficient of kurtosis ( )( 12 xβ and )( 22 xβ ) for auxiliary 
variates in a ratio-cum product estimator.  
 
Let { }NU,...U,UU 21=  be a finite population of N  units. Suppose two auxiliary variates 1x  and 2x are 

observed, along with study variate y, on ),...,2,1( NiU i = , where 1x  is positively and 2x  is negatively correlated 
with  y. A simple random sample of size n  is drawn by simple random sampling without replacement (SRSWOR) 
from the population U  to estimate the population mean (Y ) of study character y  when the population means 
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2  of 1x and 2x  , respectively, are known.  

 
The usual ratio and product estimators for estimating the population mean Y  are given respectively by  
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Singh et al. (2004) defined a ratio and product type estimator using the coefficient of kurtosis ( )( 12 xβ ) 
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To estimateY , Singh (1967) suggested a ratio-cum-product estimator using information on two auxiliary variates 

1x  and 2x  as 
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To the first degree of approximation, the mean squared error (MSE) of the estimators Ry , Py , RBy , PBy , and  1Ŷ  
are given respectively by  
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Where  
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2 PROPOSED ESTIMATOR  
 
Assuming that the information on the coefficient of kurtosis ( )(&)( 2212 xx ββ ) for auxiliary variates 1x  and 2x  

is available, the proposed estimator of  Y  is 
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When information on the second auxiliary variable 2x  is not available (or equivalently, the variable 2x takes only a 

constant value, i.e., ix2  = a (constant); i = 1,2,…,N), the estimator 2Ŷ  reduces to  RBy  as suggested by Singh et al. 

(2004). On the other hand, if the information on the auxiliary variable 1x is not available (or equivalently the 
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variable 1x  takes only a constant value, i.e., ix1 = a* (constant); i =1,2,…,N), the estimator turns out to be the 

estimator PBy , a product version of RBy .  
 
To obtain the bias and mean squared error of the proposed estimators, we assume that  

0(1 )y Y e= + , )1( 111 eXx +=  and )1( 222 eXx +=  such that  
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Expressing 2Ŷ   in terms of sei ' , we get  
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The bias and mean squared error of 2Ŷ are  
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3 EFFICIENCY COMPARISON 
 
The variance of sample mean y  in simple random sampling without replacement (SRSWOR) is 

        2)( ySyV θ=                      (15) 
 
From equations (6) to (9), (14), and (15) we have  
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(iii)     )()ˆ( 2 PyMSEYMSE <  if  
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4  A FAMILY OF UNBIASED ESTIMATORS USING THE JACKKNIFE TECHNIQUE 
 

Suppose a simple random sample of size gmn =  is drawn without replacement and split at random into g  

sub-samples, each of size m. Then the Jack-knife type ratio-cum-product estimator for population mean Y , using 

2Ŷ  is given as  
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where )/()(' mnymyny jj −−=  and )/()(' mnxmxnx ijiij −−= , i=1,2 are the sample means based on a sample 

of (n-m) units obtained by omitting the thj  group and jy  and ijx  (i=1,2; j=1,2,…,g) are the sample means based on 

the thj  sub samples of size m=n/g. 

The bias of JY2
ˆ , up to the first degree of the approximation bias of JY2

ˆ  , is obtained as  

[ ])()(
)(
)()ˆ(

212211 1
2

21
2

12 xxyxxyxxJ KbKCbKbCbY
mnN
mnNYB −+−

−
+−

= .    (21) 

From (13) and (21) we have  
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Upon simplifying (22), we get a general family of almost unbiased ratio-cum-product estimators of Y as  
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Remark 4.1.  For 0* =b , uY2
ˆ  yields the usual unbiased estimator y , while 1** )1( −δ−=b  gives an almost 

unbiased estimator for Y as    
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This is the Jack-knifed version of the proposed estimator 2Ŷ . 

 

5  AN OPTIMUM ESTIMATOR IN FAMILY uY2
ˆ  

The family of the almost unbiased estimator uY2
ˆ  in  (23) can be expressed as  

1
*

2
ˆ yyY u λ−=  ,                                 (25) 
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where [ ]2
*
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The variance of uY2
ˆ  is given by  
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Substitution of (27) in (26) yields the minimum variance of uY2
ˆ  as  
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where 01ρ  is the correlation coefficient between y  and 1y .  

From (28) it is clear that )()ˆ.(min 2 yVY u < .  

To obtain the explicit expression of the variance of uY2
ˆ , we write the following results up to terms of order 1n − , as 
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Using (14), (15), and (30) in (26), the variance of uY2
ˆ  up to the terms of order 1n −  is given as  
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Substitution of the value of *
optb  in uY2

ˆ  yields the optimum estimator )(2
ˆ

optuY  (say). Thus the resulting minimum 

variance of uY2
ˆ  is given by  
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The optimum value *
optb  of *b  can be obtained quite accurately through past data or experience.  
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6 EMPIRICAL STUDY  
 
To observe the relative performance of different estimators of Y , a natural population data set is considered. 
 
Population  [Source: Steel and Torrie (1960, p.282)] 
y : Log of leaf burn in sec., 1x : Potassium percentage, 2x  : Chlorine percentage. 
 
The required population parameters are 

6860.0=Y , 4803.0=yC , 1794.0
1
=yxρ , N=30,  

6537.41 =X , 2295.0
1
=xC , 4996.0

2
−=yxρ , n=6,  

8077.02 =X , 7493.0
2
=xC , 4074.0

21
=xxρ .  

 
 
 
Table 1. Percent relative efficiencies of different estimators of Y  with respect to y   
 
Estimators y  Ry  Py  

Rby  Pby  1Ŷ  2Ŷ  2Ŷ )ˆ( 2
optY  

PREs 100.00 94.62 53.33 100.03 132.37 75.50 169.87 173.81 
 

 
7  RESULT AND DISCUSSION 
 

The proposed estimator 2Ŷ   would be more efficient than other estimators if its mean squared error is less than the 

mean squared error of other estimators. Under conditions (16), (17), (18), and (19), the mean squared error of the 

proposed estimator would be less than the mean squared error of the sample mean estimator y , ratio estimator Ry , 

product estimator Py , and Singh (1967) estimator 1Ŷ , respectively. Thus under these conditions, the proposed 

estimator would be more efficient.  

 
Table 1 reveals that the suggested estimators 2Ŷ  )ˆ( 2

optY  are more efficient than the usual unbiased estimator y , 

ratio estimator Ry , product estimator Py , ratio and product type estimators estimator Rby and Pby   proposed by 

Singh et al. (2004), and the ratio-cum-product estimator 1Ŷ suggested by Singh (1967) with considerable gain in 

efficiency. Thus, if the coefficients of kurtosis ))()(( 2212 xandx ββ are known, the suggested estimator is 

recommended for use in practice.  
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