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ABSTRACT  

We modified further our extended dynamic model of a geyser induced by an inflow of gas, by taking into 
consideration the effects during spouting of an elbow shape, pairs of sudden expansions and contractions, and 
repeats of this shape in an underground watercourse. Through numerical simulations of this extended dynamic 
model, we see that a large number of sudden expansions and contractions or a large angular elbow in the 
underground watercourse greatly affects the spouting dynamics of the geyser.  

Keywords: Geyser, Inflow of gas, Model, Numerical simulation, Elbow, Sudden expansion, Sudden 
contraction, Watercourse, Spouting dynamics, Application 

1 INTRODUCTION  

Geysers are classified into two types dependent upon the inducer: the first type is induced by boiling, and the 
other is induced by an inflow of gas (a periodic bubbling spring). Boiling induced geysers are very common 
throughout the world. Theories about this type of geyser’s mechanisms have been proposed (Honda & Terada, 
1906), and the application of these theories to other phenomena has also been discussed (Lorenz, 2002). Also, 
observational studies of these geysers exist (Husen et al., 2004). On the other hand, gas induced geysers are 
found very infrequently and have been the subject of only a few studies (Iwasaki, 1962). Our study focuses on 
these latter geysers. Iwasaki (1962) did model experiments of a geyser induced by an inflow of gas and showed 
that the injection of higher pressure gas caused the water to spout intermittently. He calculated spouting time 
and pause time using the gas supply rate as a parameter based on a mathematical model of gas balance. 
However, his model did not discuss the spouting dynamics. 
 
Thus, we proposed a mathematical model (a static model) (Kagami et al., 2000; Kagami, 2006) and a dynamic 
model (Kagami, 2002, 2006) of a geyser induced by an inflow of gas based on observation (Ishii et al., 1999) 
and model experiments of the Hirogawara Geyser (Yamagata, Japan) (Katase et al., 1999) so as to reproduce its 
spouting dynamics. Then through modifying the dynamic model many times (Kagami, 2003; 2007), we 
proposed a model combining the above two models (Kagami, 2006). Numeric simulations of the modified 
dynamic, the combined, and the modified models show the recurrent dynamics of geyser spouting (periodic 
bubbling springs). It is possible to estimate the parameters (volume of the underground space, depth of spouting 
hole, and so on) under a geyser by comparing the results of simulation with those of observation (Kagami, 2003; 
2006; 2009). Moreover, we have verified the above models through geological exploration, analysis of hot 
spring water, and radioactive prospecting (Kagami, 2007). 
 
However, in the case of the above models, it was assumed for simplicity that the underground watercourse was 
vertically straight even though it is expected that an underground watercourse has a complicated shape in the 
deep underground regions. Each of these complicated shapes creates resistance. Therefore, to the results of our 
former study, we have added two main effects – the sudden expansion and the sudden contraction of the 
watercourse within the various shapes it may take. We have discussed these effects quantitatively through 
numerical simulation of the extended model (Kagami, 2007), in which we supposed that the watercourse had 
one sudden expansion and one sudden contraction. 
 
In reality, however, the watercourses may have various shapes. Because it is obvious that these complex shapes 
in a watercourse have a complex effect on the spouting dynamics of the geyser, we must add these effects and 
those of repeats of these shapes in a watercourse to the former model so as to better re-create the spouting 
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dynamics of this type of geyser and estimate the underground parameters more accurately. 
 
In this study, we expand further our expanded model through adding the effects of an elbow shape and repeats 
of the same shape in a watercourse during spouting to the combined model and estimate their effects on the 
spouting dynamics through numerical simulation of the further extended model. 
 
2 MODEL 

First, we describe the outlines of the three models (dynamic, mathematic or static, and combined) and introduce 
their most important results. Then we present the derivation of the extended dynamic model to which the 
above-mentioned effects were added and the major results of its numeric simulation. Finally, we introduce the 
further extended model, that is, the application of the extended dynamic model to an elbow shape and repeats of  
the same shape in the watercourse and give the results of the numeric simulation. 
 
2.1 The former models  

Because a detailed derivation of the three original models of a gas inflow induced geyser was already presented 
in former papers (Kagami 2003, 2006), we show here only the outlines and main findings. 
 
In cases where the friction between the walls of a spouting pipe and the water packed in it has not been taken 
into account, an evolutionary equation of temporal variations of the height of the top of a water pole packed in 
the spouting pipe of a periodic bubbling spring is written as: 
 

( )( ) ( ) ( ) ββρβ pSxV
dt
dxpStn

dt
xdHSxVtn +=++++ 003

3

00                   (1) 

 
where 0n  represents the molar amount of gas in an underground space just before the water pole begins to rise 
up to the upper entrance of the spouting pipe; β  is a constant concerning the gas supply rate; 0V  represents 
the volume of gas packed in a underground cave; S  represents the area of a cross section of the spouting pipe; 
H  represents the length (height) of a small volume of water packed in the pipe; p  represents the pressure of 
the gas packed in the underground cave; and x  is the position of the lower interface between the water and the 
gas in the water pole. An upper direction of a vertical line is regarded as the plus direction of the x-axis. A 
detailed derivation of Equation (1) is shown in the Appendix 
 
In cases where the friction between the walls of a spouting pipe and water packed in it has been taken into 
account, Equation (1) is changed to Equation (2). 
 

( )( ) ( )( ) ( ) ( ) βββπηρβ pSxV
dt
dxpStn

dt
xdSxVtn

S
H

dt
xdHSxVtn +=+++++++ 002

2

003

3

00
8                (2) 

 
where η  represents the viscosity coefficient. As a result, the second term of Equation (2) is added and 
represents the effects of viscosity. 

Figure 1.  A graph of the numerical simulation of Equation (2) compared 
with observations of a geyser induced by an inflow of gas (Kibedani geyser 
in Yamagata, Japan) (Kagami, in press). 
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A sample of a numerical simulation of Equation (2) is shown in Figure 1(Kagami, in press). In the graph, the 
numerical simulation of Equation (2) is compared with the observational results. We can guess the underground 
parameters that cannot be measured easily because of geological difficulties.  
 
Using the mathematical (static) model, a spouting period τ  is represented as a function of various parameters. 
For example, a spouting period τ  can be written as: 
 

( )gHPf
g

SfV
k

k ρ
αβραβ

τ +++= 0
0                                                             (3) 

 
where RT=α ; R  represents the gas constant; T  represents temperature; kf  represents pressure due to 
surface tension on the interface between the water packed in the spouting pipe and the gas in the underground 
cave; 0P  represents atmospheric pressure; and g  represents gravity acceleration. For example, when we 
observe a spouting period of a geyser induced by an inflow of gas, we can evaluate the underground parameters 
(volume of the underground space ( 0V ), depth of spouting hole ( H ), and so on) through Equation (3). 
 
The combined model unites the dynamic and the mathematical models. The combined model enables us to find 
a more reliable estimation of the underground parameters of this type of geyser because the dynamic model’s 
method of estimating underground parameters is independent of that of the mathematical model. 
 

2.2 The extended dynamic model 

In the extended dynamic model, we took into consideration the effects of a pair of sudden expansions and 
contractions as would occur in a complicated underground watercourse, as it is thought that these sudden 
expansions and contractions are frequently observed in underground watercourses and their resistance is 
comparatively large. 
 
Sudden expansion and sudden contraction are shown in Figures 2 and 3, respectively. 1D  and 2D in each 
figure represent the diameters of the wide and narrow parts of a pipe respectively. 1V  and 2V  represent the 
velocity of the flows in each part. The shape of a sudden expansion is the same as one of sudden contraction as 
shown in both figures. However, in the case of sudden expansion, water flows from a narrow part of the pipe to 
a wide one, while in a contraction, water flows from a wide part of the pipe to a narrow one. For example, if hot 
spring water passes a sudden contraction region when it flows upward, the region replaces a sudden expansion 
region when it flows downward. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
The loss water head of sudden expansion seh  and that of sudden contraction  sch  are defined using the loss 
coefficient of sudden expansion sef   and that of sudden contraction scf   respectively as: 

  
g

V
fh sese 2

2
1=                                                               (4) 

Figure 2.  Illustration of 
a sudden contraction 

D2 

D1 

V2 

V1 

Figure 3.  Illustration of a 
sudden expansion 

D2 

D1 

V2 
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where g  represents gravity acceleration. 
 
Now we assume the direction from a wide part of the pipe to a narrow one, that is, the direction of an 
up-pointing arrow in Figure 2 coincides with the vertically upward direction. A spouting mode begins when the 
surface tension on the interface between the water packed in the spouting pipe and the gas in the underground 
cave (and weight of a small volume of water packed in the spouting pipe and pressure of the atmosphere) 
becomes smaller than the pressure of gas in the underground cave. Then an equation of motion of the small 
volume of water is written as (Kagami, 2003): 
 

  SpgSHpS
dt

xdSH 02

2

−−= ρρ                                                   (6) 

 
where x  is regarded as the position of the lower interface between the water and gas in the water pole, and the 
upper direction of a vertical line is regarded as a plus direction of the x-axis. Adding the effects of a sudden 
contraction and expansion to the former model in Equation (6), we get the following equations. 
 

(1) In the case of 0≥
dt
dx  

scgShSpgSHpS
dt

xdSH ρρρ −−−= 02

2
                                                    (7) 

(2) In the case of 0≤
dt
dx  

segShSpgSHpS
dt

xdSH ρρρ −−−= 02

2
                                                   (8) 

 
Finally, we arrive at the following equations to replace Equation (1). 
 

(1) In the case of 0≥
dt
dx  

( )( ) ( )( ) ( ) ( ) ββρβρβ pSxV
dt
dxpStn

dt
xd

dt
dxfSxVtn

dt
xdHSxVtn sc +=+++++++ 002

2

003

3

00
         (9) 

 

(2) In the case of 0≤
dt
dx  

( )( ) ( )( ) ( ) ( ) ββρβρβ pSxV
dt
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dt
xd

dt
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D
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dt
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⎠

⎞
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⎝

⎛
+++++ 002

24
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2
003

3

00
   (10) 

 
Equations (9) and (10) are basic equations that include the effects of a sudden contraction and expansion. 
 
2.3 The further extended dynamic model (application of the former extended 

dynamic model) 

In this section, we expand the former dynamic model into the case where a shape, for example, an elbow shape, 
or repeats of the same shape, for example, repeats of a sudden contraction and expansion, exist in a watercourse. 
 
2.3.1 The case where repeat pairs of sudden contractions and expansions exist in a 

watercourse 

In the case where repeats of the same shapes exist in a watercourse, we can easily modify the former extended 
dynamic model by taking the effects of these repeats into consideration. For example, in the case where repeat 
pairs of sudden contractions and expansions exist in a watercourse, the extended dynamic model is modified as 
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follows. 
 

(1) In the case of 0≥
dt
dx  

( )( ) ( )( ) ( ) ( ) ββρβρβ pSxV
dt
dxpStn

dt
xd

dt
dxmfSxVtn

dt
xdHSxVtn sc +=+++++++ 002

2

003

3

00
      (11) 

 

(2) In the case of 0≤
dt
dx  

( )( ) ( )( ) ( ) ( ) ββρβρβ pSxV
dt
dxpStn

dt
xd

dt
dx

D
D

mfSxVtn
dt

xdHSxVtn se +=++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++ 002

24

1

2
003

3

00
 (12) 

 
where m  represents the number of repeats of pairs of sudden contractions and expansions. Equations (11) and 
(12) are basic equations that include these effects. 
 
2.3.2  The case where an elbow shape exists in a watercourse 

When a shape exists in a watercourse, we can easily modify the 
extended dynamic model, taking the effects of the shape into 
consideration. For example, we consider an elbow shape in a 
watercourse, as illustrated in Figure 4. The arrow shows the flow, 
which is turned at the region resembling a human elbow. 
  
The loss water head of elbow bh  is written using the loss 
coefficient of the elbow bf  as: 

  
g

V
fh bb 2

2
1=                                  (13) 

 
where 1V  represents the velocity of the flow. The loss coefficient of elbow bf  is experimentally written using 
an angle ϑ  of the elbow as: 
 

  
2

sin05.2
2

sin946.0 42 ϑϑ
+=bf                                                 (14) 

 
 
Thus, in the case where an elbow shape exists in a watercourse, the extended dynamic model is modified as 
follows. 
 

(1) In the case of 0≥
dt
dx  

( )( ) ( )( ) ( ) ( ) ββρβρβ pSxV
dt
dxpStn

dt
xd

dt
dxfSxVtn

dt
xdHSxVtn b +=+++++++ 002

2

003

3

00
      (15) 

 
 

(2) In the case of 0≤
dt
dx  

( )( ) ( )( ) ( ) ( ) ββρβρβ pSxV
dt
dxpStn

dt
xd

dt
dxfSxVtn

dt
xdHSxVtn b +=+++++++ 002

2

003

3

00
       (16) 

 
Equations (15) and (16) are basic equations that include the effects of an elbow shape. 
 

 

Figure 4. Illustration of an elbow shape

θ 
1V
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3 RESULTS AND DISCUSSION 

In this section, we show the results of numerical simulation of the extended dynamic model and the further 
extended dynamic model and discuss the models by comparing these results. The following parameter values 
are common to both models: [ ]35

0 1090.9 mV ×= , [ ]331000.1 mkg×=ρ , [ ]201080.9 smkgg ⋅×= , 
[ ]mH 21000.1 ×= , [ ]smol41090.1 −×=β , and [ ]221000.1 mS −×= . 0n  is calculated using Equation (26) 

when ][1001.1 5
0 Pap ×=  and ][1020.2 21 mNf k ×= . Each model equation is simulated numerically using 

the Runge-Kutta method. 
 
Based on observational results, it has been determined that the gas slug in the underground space (see Figure 8 
in the Appendix) never reaches the spouting exit (Figure 8) during the spouting of water packed in the pipe 
(Ishii et al., 1999). Also, the gas slug never breaks the interface between the water packed in the spouting pipe 
and the gas in the underground space (Figure 8) when at least a cross section of the spouting pipe is very small 
(Kagami, 2002). On the other hand, the effects of a loss of a part of the water packed in the spouting pipe due to 
its spouting have already been discussed in previous studies (Kagami 2002; 2006). The effects of the 
evaporation of the gas dissolved in the water packed in the spouting pipe and the loss of the evaporated gas and 
a part of the water during spouting have also been discussed in a previous paper (Kagami, 2009). Because the 
subject of this paper is the study of the effects of various shapes and their repeats in an underground watercourse, 
in the following numerical simulation results, we give values of parameters as if no spouting occurs and the 
oscillation of the height of the water pole occurs in the deep underground region.  
 
 
 
3.1 The former models  

To begin, we show the results of numerical simulation of the former extended dynamic model (Kagami, in 
press). In this, the temporal variation at the top of a water pole depends on the ratio of 2D  : 1D , that is, 

1

2
D

D  

as shown in Figure 5. Corresponding values of scf  and sef  in the case of each 2D  : 1D  are shown in Table 
1. We can see that the larger the ratio of 2D  : 1D , the shorter the period of height’s oscillation.  
 
 

Figure 5. Temporal variation at the top of a water pole depends on the 
ratio of D2: D1 
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We can also observe that the larger the ratio of 2D  : 1D , the larger the amplitude of the height’s oscillation. 
These two tendencies occur because the smaller the ratio of 2D  : 1D , the larger the values of scf  and sef . 
Consequently, the effects of the resistance are larger and hinder the water flow more in the case of a 
larger

1

2
D

D . However, we can also observe that though the change of the height’s oscillation depends on the 

ratio of 2D  : 1D , the change is not large. From these results, it may be concluded that the effects of only one 
pair of sudden expansions and contractions in an underground watercourse are not very large. 
 
 
3.2 The case where there are several pairs of sudden contractions and 

expansions in a watercourse 

Next we show the results of numerical simulation in the case where repeat pairs of sudden contractions and 
expansions exist in a watercourse. We adopt 0.7 as the value of 2D  : 1D . Temporal variation of a top of a 
water pole depends on the number of pairs of sudden expansions and contractions as shown in Figure 6. We can 
see from Figure 6 that the larger the number of sudden expansions and contractions, the smaller the amplitude of 
the height’s oscillation. This is because the resistance due to pairs of sudden expansions and contractions 
increases in proportion to an increase in their number. 

 
We can also observe that the larger the number of pairs of sudden expansions and contractions, the larger the 
degree of transformation of the temporal variation graph. That is, the time-variation of the amplitude of the 
height’s oscillation and so on do not always regularly change due to the number of pairs of sudden expansions 
and contractions. This may be the key to understanding the spouting mechanism of an irregularly spouting 
geyser. 
 
As a result, though in the case of only one pair of sudden expansions and contractions, the effects are not very 
large, in the case of many of these pairs or the existence of complicated shapes in the underground watercourse, 

Table 1. Corresponding values of scf  and sef for each D2: D1 
 
 

2D  : 1D  scf  sef  

0.7 0.29 0.26 

0.5 0.43 0.56 

0.3 0.49 0.82 
 

Figure 6. Temporal variation at the top of a water pole depends on the 
number of pairs of sudden expansions and contractions 
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the effects are not negligible. 
 
 
3.3 The case where an elbow shape exists in a watercourse 

In this section, we present the results of numerical simulation in the case where an elbow shape exists in a 
watercourse. Here the temporal variation at the top of a water pole depending on the angle of elbow is shown in 
Figure 7. We can see from Figure 7 that the larger the angle of elbow, the smaller the amplitude of the height’s 
oscillation because the larger the angle of elbow, the larger the value of bf . That is, the resistance due to an 
elbow shape increases in obedience to Equation (14) according to the increase in the elbow’s angle.  

 

We can also see that the larger the angle of elbow, the larger the degree of transformation in the temporal 
variation graph. Moreover, the degree of transformation in the temporal variation graph is very large in the case 
where the angle of elbow is sufficiently large. As a result, we can see that where there is a large angle elbow in 
an underground watercourse, the effects of this elbow are not negligible. 
 

4 CONCLUSION  

We modified our extended dynamic model of a geyser influenced by an inflow of gas by observing through 
numerical simulations the effects of an elbow shape or repeats of pairs of sudden expansions and sudden 
contractions in the watercourse during spouting. Through comparing the results of these numerical simulations, 
we conclude that a large number of pairs of sudden expansions and contractions or a large elbow angle in the 
underground watercourse affect greatly the geyser’s spouting dynamics. Through this study, we can conjecture 
that shapes having a large loss water head and their repeats in an underground watercourse generally have a 
great affect on the spouting dynamics of a geyser. 
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6  APPENDIX 

Derivation of Equation (1) 
 
Though a detailed derivation of Equation (1) was already given in another paper (Katase et al., 1999), we show 
it here again for the readers’ convenience. 
 
From the results of model experiments of a geyser induced by an inflow of gas (Kagami, 2000), we understood 
that the beginning of a spout is made by the loss of surface tension supporting a small amount of water packed 
in a pipe leading to a spouting exit. That is, in the model experiments, a situation shown in Figure 8 was 
assumed. A spouting hole is deep and leads to a space where gas and water are supplied at a constant rate deep 
under the ground. Before the start of a spout, the gas pressure in the space is supported by surface tension on the 
lower interface between the water and the gas (and also gravity acting on the mass of a small amount of water 
packed in the hole (pipe) and the pressure of the atmosphere). However, when the gas pressure in the space 
becomes larger than a threshold, the surface tension cannot support this gas pressure. Then a small amount of 
water packed in the pipe leading to the spouting exit begins to move up to the exit on the ground. In the previous 
model, the dynamics of a small amount of water packed in the pipe was discussed. 
 
The gas pressure in the space just before the small amount of water begins to move up to the exit on the ground 
is represented as ip , where 
 
  ki fgHpp ++= ρ0 .                                                        (17) 
 

0p  represents the pressure of the atmosphere; ρ  represents the density of water; g  represents gravity 
acceleration; H  represents the length of the amount of water packed in the pipe from the lower interface 
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between the water and the gas to the upper 
interface; and kf  represents the pressure from 
the surface tension on the lower interface 
between the water and gas. kf  is represented 
as: 

  
S

f k
ασπ cos2

=                 (18) 

where σ  represents the coefficient of the 
surface tension; α  represents the contact 
angle; and S  represents an area of a cross 
section of the pipe filling up with a small 
amount of water. 
 
When a small amount of water packed in the 
hole begins to move upward, kf  is regarded as 

0→kf . If the upper direction of a vertical line 
is regarded as the plus direction of the x-axis, an 
equation of the motion of the amount of water is 
written as; 

  SpgSHpS
dt

xdSH 02

2

−−= ρρ      (19) 

where p  represents the pressure of the gas in 
the underground space. Here, x  is regarded as 
the position of the lower interface between the 
water and gas in the water pole, and the friction 
between the walls of the pipe and the water is ignored. 
 
When it is assumed that the gas in the underground space is an ideal gas and changes isothermally, 

  0=⎟
⎠
⎞

⎜
⎝
⎛

n
pVd                                                               (20) 

 
where V  represents the volume of the gas filling the underground space and n  represents its molar number. 
From Equation (20), 
  
 0=−+ pVdnnVdpnpdV                                                         (21) 
is derived. 
 
When it is assumed that 0=x  and 0VV =  just before the small amount of water begins to move up, we can 
write V  as; 
  SxVV += 0                                                                           (22) 
 
From Equation (22), 
  SdxdV =                                                                             (23) 
is derived. 
 
From the assumption that gas is supplied at a constant rate in the underground space, 

  β=
dt
dn                                                                               (24) 

 
where β  is the derived constant. From Equation (24), n  can be represented as: 
  tnn β+= 0                                                                            (25) 
 
where 0n  represents the molar number when ipp =  and 0VV = . On this account, using Equation (17), we 
can derive 

A spouting exit 
0p  

h  

H
A small amount of 
water 

x  

0=x

p

0V

A space where gas is 
supplied at constant 
rate 

Supply of gas 

Figure 8.  An illustration of a geyser induced by inflow of gas 
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  ( )k
i fgHp

RT
V

RT
Vp

n ++== ρ0
00

0
                                                         (26) 

 
Applying Equations (22) - (25) to Equation (21), 

  ( ) ( )( ) ( ) βββ pSxV
dt
dpSxVtn

dt
dxpStn +=++++ 0000

                                      (27) 

is derived. And from Equation (19), 

  
3

3

dt
xdH

dt
dp

ρ=                                                                         (28) 

is derived. From Equations (27) and (28) we can get 

  ( )( ) ( ) ( ) ββρβ pSxV
dt
dxpStn

dt
xdHSxVtn +=++++ 003

3

00                                         (29) 

 
x , that is, a position in the lower interface between the water and gas in the water pole moves in obedience to 
Equation (29). 
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