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ABSTRACT 

Academic and industrial users are increasingly facing the challenge of petabytes of data, but managing and 
analyzing such large data sets still remains a daunting task. The 4th Extremely Large Databases workshop was 
organized to examine the needs of communities under-represented at the past workshops facing these issues. 
Approaches to big data statistical analytics as well as emerging opportunities related to emerging hardware 
technologies were also debated. Writable extreme scale databases and the science benchmark were discussed. 
This paper is the final report of the discussions and activities at this workshop. 
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1 EXECUTIVE SUMMARY 

The 4th XLDB workshop (XLDB4) focused on challenges and solutions in the oil/gas, finance, and 
medical/bioinformatics communities, as well as several cross-domain big data topics. 
 
The three domain-specific panels expressed similar concerns about an explosion of data and limits of the current 
state of the art, despite having different applications and analyses. All three communities (and others present) 
were struggling with these challenges: integrating disparate data sets including unstructured or semi-structured 
data; noise and data cleansing; and building and deploying complex analytical models in rapidly changing 
environments. The oil/gas exploration and production business analyzed petascale seismic and sensor data using 
both proprietary rendering algorithms and common scientific techniques like curve fitting, usually with highly 
summarized data. The refining and chemicals business had terabyte, but growing, datasets. Most processing of 
historical financial transaction data was offline, highly parallelizable, and used relatively simple summarization 
algorithms although the results often fed into more complex models. Those models may then be applied, 
especially by credit card processors, to real-time transactions using extremely low-latency stream processing 
systems. High-throughput sequencing and other laboratory techniques as well as increasingly electronic medical 
records (including images) produced the large datasets in the medical/bioinformatics field. Applications here 
included shape searching, similarity finding, disease modeling, and fault diagnosis in drug production. The 
medical community was striking for its non-technical issues including strict regulation and minimal data sharing. 
 
Progress was made on the science benchmark that was conceived at previous XLDB workshops. This benchmark 
was created to provide concrete examples of science needs for database providers and to drive solutions for 
current and emerging needs. Its specifications and details have now been published. The next iteration will go 
beyond processing of images and time series of images to include use cases from additional science domains. 
 
Statistical analysis tools and techniques were reportedly insufficient for big, distributed data sets. First, statistical 
tools should be developed to scale efficiently to big data sizes. Second, approximating and sampling techniques 
should be used more often with large data sets since they can reduce the computational cost dramatically. Finally, 
existing statistical tools should be made easier to use by non-specialists. 
 
New hardware developments have made big data computation more accessible though uncertain in some ways. 
Power is the biggest issue and one that will drive the future of hardware as well as analysis. Regarding 
performance, more evidence of the potential speedup from GPU computing was shown through examples of 

Data Science Journal, Volume 9,1 March 2011

MR1



 
 

 

complex computations within SQL databases. Attendees were enthusiastic about new storage technologies like 
solid state disks but disagreed on whether they would displace older, proven technologies. They similarly 
disagreed on whether many-core processing (hundreds to thousands) would begin to replicate core+memory on-
chip rather than the current, simpler model. 
 
True updates are rarely needed in extreme-scale databases since the vast majority of big data sets are immutable. 
Wherever data updates are necessary, attendees preferred data versioning and history over updating data in-place. 
 
The next workshop is expected to convene in the fall of 2011. Reference case studies, high performance 
extreme-scale visualization, data simulation, and cloud computing were among most demanded topics. 

2 ABOUT THE WORKSHOP 

The Extremely Large Databases (XLDB) Workshops provide a forum for topics related to databases of terabyte 
through petabyte to exabyte scale. The 4th workshop1 (XLDB4) in this series was held at SLAC in Menlo Park, 
CA, on October 5, 2010. The main goals of the workshop were to: 

• reach out to the communities under-represented at the past workshops, in particular oil/gas, finance, and 
medical/bioinformatics, 

• review special topics in big data analytics: approaches to big data statistical analytics, opportunities 
from emerging hardware technologies, and writable extreme-scale databases, and 

• discuss the advancement of the state of the art of XLDB. 
This XLDB workshop was followed by a 1.5 day open conference, which was attended by 150 people. This 
report covers only the workshop portion. Information about the conference sessions, including the presentations, 
can be found at the conference website2. 

2.1 Participation 
Like its predecessors, XLDB4 was invitational in order to keep the group both small enough for interactive 
discussions and balanced for good representation among communities. XLDB4’s attendance numbered 55 
people representing science and industry database users, academic database researchers, and database vendors. 
Industrial user representation was greater compared to past workshops. Further attendance details are on the 
website. 

2.2 Structure 
Continuing the XLDB tradition, XLDB4 was composed of interactive discussions. The first sets were panel 
discussions on domain-specific challenges and solutions. Next were discussions focused on specific cross-
domain big data topics. The concluding discussions reviewed the science benchmark and plans for the next 
XLDB. 

3 USER COMMUNITIES’ PERSPECTIVES 

XLDB4 involved several new user communities in the areas of oil/gas, finance, and medical/bioinformatics. The 
first two of these three had never been represented or discussed at past workshops. Bioinformatics was discussed 
at XLDB3, but the topic was expanded to include new areas such as medical informatics and biosecurity. 
 
Many similarities to other domains raised in the past were noted, including needs for incremental scalability, full 
automation of operations, fault tolerance, approximate results for queries, and software simplicity. Regarding the 
issue of using a database, particularly a relational one, versus analysis with a map/reduce framework, it was 
noted that adding SQL-like features to non-database solutions such as Hadoop increases users' interest in these 
solutions, in some cases by as much as a hundredfold. 

                                                           
1  Workshop website: http://www-conf.slac.stanford.edu/xldb10/Workshop.asp 
2  Conference website: http://www-conf.slac.stanford.edu/xldb10/ 

Data Science Journal, Volume 9,1 March 2011

MR2



 
 

3 

3.1 Oil / Gas 
The oil/gas panel consisted of representatives from two large multinational corporations — Exxon Mobil and 
Chevron — and TechnoImaging, a company recently spun-off from the University of Utah's CEMI3. Some panel 
members were from the upstream, or oil exploration and production, portion of the business and others came 
from the downstream, or oil refinement and chemistry portion. 
 
The industry has had petascale data for some time now, having “more bits than barrels” as one panelist put it. 
The largest data sets are from upstream users and consist of long-term seismic measurements. They are used to 
build 3-D earth models at the highest possible resolution. Smaller, but rapidly growing, data sets come from 
instrumented wells, production facilities, refineries, and chemical plants. These sensor readings have typical 
sampling rates on the order of 1 per minute except when detection of certain transient features requires higher 
rates (~100Hz); their total data volumes may be in the dozens of terabytes. The growth in data volumes comes 
from faster and cheaper sensors and more wells that need monitoring. In some cases, e.g., passive sensing, data 
are unavoidably noisy and their sources poorly known, and a large amount of metadata is required to make them 
useful. Recorded data are typically de-sampled and compressed immediately after collection. 
 
Common analyses include stacking multiple images together to achieve higher resolution, creating depth images 
through reflection coefficients, and curve fitting. These are similar to techniques used in astronomy and other 
sciences. Pattern-matching is used to explore new regions by comparing them to well-understood regions. 
Seismic data rendering is reportedly similar to movie industry rendering done by Pixar or DreamWorks, but 
these are difficult to compare since algorithms in both industries are proprietary. Most complex analyses on 
larger data sets are hard-coded as fixed pipelines; ad-hoc querying is highly desired but thought to be too 
difficult.  
 
Industry insiders considered their data analytics practices to be “stone age” (in some cases dating back to the 
1980s). For example, a disk is often still viewed as a precious resource, so data analyzers receive only very 
highly summarized data. Existing tools make it hard to extract, analyze, and visualize data. The community 
relies mostly on off-the-shelf software; among the tools mentioned were Paradigm4, Schlumberger's Petrel5, 
Halliburton's OpenWorks6, Spotfire7, Apache Tomcat Application Server, Matlab, Oracle, and SQL Server. 
Legal considerations are strong barriers to evaluating, let alone deploying, new software. 
 
The oil/gas community reported its biggest problem to be poor data integration. Data sets originate from multiple 
sources world-wide and often cannot leave their countries of origin. Data sources and schemas are typically 
completely disjointed (e.g., brought in through acquisitions and never properly merged). However, upper 
management is pushing for data to be cleaned and better integrated since the cost of building new wells is 
increasing and the payoff of more educated decisions is apparent. Another reason for better data standardization 
is data exchange (driven by cost-cutting) between contract parties, like government agencies (such as USGS) and 
the oil/gas companies. 
 
Other problems are poorly or inconsistently formatted data, difficulties in synthesizing different types of data, 
poor tools, and poor tracking of past work. Important data is often unstructured and/or in forms difficult to 
analyze, such as PowerPoint or XML, and analysis involves “art in interpretation.” Analysis is further 
complicated by the variety of available aerial models (electric, acoustic, atomic, magnetic, seismic, and others). 
Additionally, the lack of appropriate tools and procedures to capture, preserve, and query data provenance results 
in unnecessary repeats of similar experiments. 

3.2 Finance 
The finance community was represented by users from JP Morgan Chase and VISA. They revealed different 
processing models, one dominated by low-latency lightweight transaction processing (credit card processing) 
                                                           
3  Consortium for Electromagnetic Modeling and Inversion, http://cemi-dt-13.gg.utah.edu/~wmcemi/ 
4  http://www.pdgm.com 
5  http://www.slb.com/services/software/geo/petrel.aspx 
6  http://www.halliburton.com/ps/Default.aspx?navid=210&pageid=852 
7  http://spotfire.tibco.com/ 
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and another dominated by big offline data analysis (banking). Petascale data sets are not uncommon, especially 
where historical data must be kept for regulatory reasons (e.g., within banks). Data sets are naturally divisible, 
typically into geographical “zones” containing ~1 petabyte each. Zones are further subdivided into ~20 terabyte 
pieces to bypass limitations of existing off-the-shelf systems used for analyzing the data.  
 
Computation at credit card processors was dominated by extremely low-latency stream processing on many 
small pieces of data. In these systems, each transaction performs ~400 jobs (“joins”) that process encrypted data 
(including hashes of names and account numbers) against recent (within 1 year) customer data without a 
database. Each transaction operates in a stream that processes up to a thousand transactions per second, and 
streams are typically grouped in 100 stream units. Because of tight latency requirements, these streams operate 
only on a terabyte, keeping everything in RAM. Card processors also performed offline analysis on larger, 
petabyte data sets that include longer time ranges (up to 10 years) for tasks like building neural nets and risk 
models, but “anything that makes money” is a stream process. Processing at banks, on the other hand, was 
dominated by heavy offline, pro-active analysis on cumulative historical data: continuous risk calculation, fraud 
detection, and pattern analysis. Compared to card processors, banks kept more data of a larger number of 
different types (e.g., binaries like check images). 
 
Offline analysis is highly parallelizable — simultaneous runs of >100 streams are typical. Time-based analyses 
(monthly, daily, 10 min, 30 sec batches) are the most common. A typical process relies on basic commands such 
as cat, grep, awk, or sort. 80% of processing can be classified as simple grouping and sorting, independent 
of the type of analyses run.  
 
The finance community reported that the required performance is usually achieved through expensive brute force 
in both hardware (e.g., hardware accelerators) and software (high end, vendor managed). For security reasons 
only private clouds tightly sealed with firewalls are used. Banking data centers tend to be as large as those run by 
web companies (O(100K) nodes) although the number of them is much smaller. 
 
A typical analysis software stack includes dozens of different off-the-shelf programs ranging from Hadoop, 
through R, to Oracle, DB2, and Teradata. Custom C++ code is also prevalent, although it is gradually being 
replaced by Python equivalents (observing a 40:1 reduction in lines of code). R is used primarily with smaller 
(few gigabytes) data sets because of its complexity when used in full-stream processing. Different geographical 
areas are analyzed independently and never merged together.  
 
The main problem cited by banking was just accessing data quickly—not just large scale data, but data buried in 
spreadsheets too. Another tough challenge cited was the construction and deployment of reliable models, e.g., 
those for fraud detection. Models are manually built in-house by modelers who typically do not truly understand 
what is modeled and how to model it. Their deployment is complicated when models exhibit anomalous 
behavior when using live versus test data. Models help the system do the right thing despite unique conditions 
where the best customers look like the worst customers — frequent travelers trigger many false fraud alerts but 
use credit cards the most. Other important needs included high availability, hot-hot failover, as well as role-based 
and row-level access. 

3.3 Medical / Bioinformatics 
The medical/bioinformatics panel was represented by institutional users from NIH (molecule screening), two 
children's hospitals (medical records, analyzing proteins), U.S. Department of Energy (cybersecurity, genomics), 
and NASA (early disease detection). The medical and bioinformatics communities reported a data explosion 
similar to other domains, caused by similar reasons: cheaper and higher-resolution instruments. All reported 
some degree of unpreparedness for the scope and scale of emerging data volumes.  
 
Examples of medical and bioinformatics analytics include shape searching, similarity finding, disease modeling 
and analysis, and fault diagnosis in drug production. The last requires detailed provenance tracking of data from 
highly distributed sources and was reported as the most demanding provenance-related use case so far. 
 
The most striking difference between these two communities and the rest is (lack of) research cohesion. Both 
communities reported wide dispersion and fragmentation, with many small groups competing instead of 
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collaborating. Data is rarely shared due to ethical concerns and extreme regulations, as well as due to a desire to 
protect research that might yield valuable publications. As some noted, most problems are related to humans 
rather than software. They complained of the culture of cutthroat competition and non-sharing rather than 
collaboration but did not blame the researchers, agreeing that it seemed necessary for survival in their funding 
and leadership structures. 
 
Data quality is a big problem. Because hardware and processing practices at wet-laboratories change frequently, 
sometimes from one month to the next, there is little time to achieve production and process stability. The arrival 
of new hardware means new proprietary formats and changes to the nature and form of collected data. Even if 
the instruments and formats were stable, there is considerable variation in its collection. In many cases, in 
particular when medical records are involved, data is observational in nature — it is noisy and collected 
inconsistently without any enforced standards. Thus data are not recorded with science and analytics in mind. 
Later analysis is complicated by missing data that are biased in statistically significant ways — for example, a 
doctor might determine that patient is not sick enough and not collect certain data. “Negative results” are often 
not collected because they are useless for publication, even though they would be valuable for future statistical 
analysis.  

4 SCIENCE BENCHMARK 

The concept of a science benchmark was first introduced at XLDB2. The idea behind it is to capture the essence 
of science data processing and analysis, including not only querying processed data but also the processing or 
“cooking” of raw data itself. The benchmark would highlight areas that are not well-served by traditional 
RDBMSes and would serve both as a repository of abstract, general, multidisciplinary use cases and as a spur to 
database developers to provide features that are useful to science and science-like industry. 
 
The current version of the benchmark covers one such area: processing of images and time series of images. The 
data and queries are based on astronomy and in particular the LSST project, but they are designed to be general 
enough to represent the needs of similar domains such as geoscience and medical imaging although the exact 
alignment between the benchmark and those domains needs to be determined and may require adjustment. 
Example queries include detecting objects in images, resampling an image onto a different pixel grid, and 
finding intersections of object trajectories with regions of space and time. The benchmark can be scaled to 
different levels of computational difficulty and data size, enabling measurement on systems from a single 
computer up to a large cluster. 
 
The team working on the benchmark submitted a paper to ICDE'11, and the paper was made publicly available 
shortly after the workshop through the XLDB4 website8. The data generator and a sample implementation on top 
of MySQL are also available on the XLDB wiki9. 
 
At least three providers (SciDB, Greenplum, MonetDB) expressed interest in trying to run the benchmark. 
Broadening the buy-in from science and engaging more science disciplines were discussed as the most important 
steps to make the benchmark more useful. Other possibilities included a text-oriented benchmark emphasizing 
UDFs and including more of the overall data management process. Building a TPC-like organization that would 
coordinate the benchmark effort was considered but was deemed premature at the current level of momentum. 

5 APPROACHES TO BIG DATA STATISTICAL ANALYTICS 

During this session, attendees discussed statistical analytics in a big data context, discussing the main problems, 
current practices, and future directions. Statistical methods are widely used in many areas like forecasting, bio-
defense, and web user modeling. A few truths seemed obvious: (a) the current methods should be more scalable, 
simpler, and more accessible to non-experts; (b) use of analytics is widespread and becoming more so; and (c) 
the data volumes for analytics have long grown past the point where simple hardware upgrades are sufficient for 
large data sizes — new techniques must be used. 

                                                           
8  http://www-conf.slac.stanford.edu/xldb10/docs/SSDB_benchmark.pdf 
9  https://confluence.slac.stanford.edu/display/XLDB/SS-DB+Benchmark 
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Computational statistics, like most computational applications, is still in transition to software that can scale and 
deal with the practicalities of big data. Most methods assume that data sets fit in a machine’s main memory and 
are only applicable to big, distributed data sets through much pain. Success requires an awareness (perhaps an 
intimate one) of implementation details like data partitioning schemes (big data sets are invariably partitioned), 
infrastructure details (e.g., topology, memory size), and runtime hardware failure. Few who have such an 
awareness/skill are also statisticians, and it does not seem practical in the long term for statisticians to worry 
about implementation details. Good solutions must be built, and in the near term, statisticians need to get 
involved in new areas, such as databases, visualization, or exotic hardware technologies. Solutions for some 
hard-to-parallelize algorithms, like machine learning, will be difficult to build, but solutions for most algorithms 
should be tractable. 
 
The off-the-shelf statistics software systems used by statisticians, in general, have not embraced big data and are 
difficult if not impossible to use with large data sets. Attendees wished for more statistics capabilities in 
languages familiar to non-statisticians (like SQL) but cautioned that education was necessary because powerful 
tools are “dangerous” in the wrong hands. Still, statisticians are reluctant to learn new, more scalable methods 
because they are “stuck” in software systems such as R, SAS, and MATLAB that took extraordinary effort to 
master but that are extremely productive on desktop-sized datasets. To save human time, analytics need to be as 
automated as possible, and statistics functions need to be more widely available (e.g., in scalable tools). 
Attendees repeatedly called for merging the power of statistical tools with the scalability of Hadoop. 
 
The use of analytics is so widespread that large organizations (especially in industry) now perform “analytics of 
analytics” to share knowledge, avoid duplication of effort, optimize resource usage (“avoid 15 identical jobs 
each touching the same petabyte of data”), and connect clusters of people doing similar analytics, in internal 
LinkedIn-style social networks. 
 
Some have dealt with big data volumes by not persisting them. Instead, they perform continuous analytics on 
live data streams and visualize the results directly without persisting them. Certain data characteristics — 
variability, for example — are difficult to visualize, however. 
 
To reduce the data and computational intensity, some participants pushed for more exploration of approximate 
results because they can be computed so much more quickly and because perfect results are nearly impossible in 
the presence of faults and “messy data.” Others cautioned that approximate results (from probabilistic algorithms 
or sampling strategies) can be misleading and could easily be interpreted incorrectly, warning of a “slippery 
slope.” Yet it is clear that, at least in some cases, computational costs can be reduced by using simpler 
algorithms, especially with bigger data volumes. Attendees cited anecdotal evidence that simpler models 
generalize and produce better results, noting that real data is messy and additional variables add big human costs 
to understanding. Research into new models and algorithms is hampered, however, by the limited availability of 
large, freely-distributable data sets. 

6 EMERGING HARDWARE TECHNOLOGIES 

Undeniably, the appetite for data is “growing faster than memory gets cheaper.” Flash memory-based solid state 
disks (SSDs), with their fast random access and potential for high bandwidth at a relatively low price, are 
attempting to satisfy the need for increased performance while keeping up with the hunger for larger sizes. They 
are quickly appearing in production systems, but opinions are highly divided on whether or not flash memory or 
other storage technologies, like memristors, can “change the curve” of computing by displacing old, cheap, 
proven technologies. Opinions are also divided regarding the future direction of general-purpose multi-core 
processing — many argue that replicating units of cores and memory is more likely than continuing the 
expansion of the number of cores per physical CPU package. 
 
After demonstrations of their use and effectiveness by several disciplines, GPUs are now commonly considered 
as a means to accelerate data processing and analysis. Dividing tasks into small, highly-parallel units executed 
on GPUs has the potential to drastically speed up many applications, including complex computations within 
SQL databases, as a team from JHU demonstrated. In their case, moving computation to GPUs meant the use of 
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different algorithms; they pointed out that the tree-based algorithms commonly found in database processing 
were inefficient at bin sizes small enough to fit in GPU implementations. 
 
Some claimed that increasing network bandwidth speeds would be a game-changer for analytics, as the currently 
available 10Gbps (or emerging 40Gbps) bandwidth is close to the speed of local storage. Fast networks will 
certainly enable better virtualization and streaming. 
 
The biggest issue for everyone was power. The most common techniques mentioned to limit consumption were: 
(a) eliminating computing (thinking before computing, eliminating useless queries), (b) optimizing computing 
(building power-optimized software), and (c) optimizing hardware (lower-power CPUs, GPUs instead of CPUs, 
SSDs instead of spinning disks). Power considerations are the most likely to decide the shapes of future analysis 
and hardware. 

7 WRITABLE EXTREME SCALE DATABASES 

The session on writable extreme scale databases exposed a limited need for true updates on extreme scale 
databases. Participants noted that the vast majority of data was immutable, primarily because published results 
must always be reproducible — nobody dared to update raw data. Derived data products, however, often require 
updates. For example, LSST will need to update some portion of its derived data products daily while tracking 
fast-moving and fast-changing astronomical objects. In most cases where updates are necessary, projects are 
choosing to append and track lineage instead of updating data in-place. 
 
All agreed that guaranteeing true consistency at a large scale is too hard and too expensive, and thus users have 
increasingly accepted weaker data consistency, relying on provenance to recover from the unexpected. 
 
In summary, the session underscored the needs for tracking versions, history, and provenance reliably and did 
not expose any new big challenges related to updating large data sets. 

8 NEXT STEPS 

As in the past, a small portion of the workshop was devoted to future planning.  
 
The future of the science benchmark was discussed. The next steps include publishing the ICDE'11 submission 
(done immediately after the workshop), publishing the benchmark along with an explanation of how to 
synthesize the input data, incrementally improving the benchmark using community feedback, and aligning the 
benchmark with additional science disciplines. Finding similarities between the benchmark and industrial needs, 
in particular from big areas such as health care, was viewed as a positive step forward. Increasing awareness of 
the benchmark should encourage vendor competition to support scientific needs. 
 
Participants were once again overwhelmingly satisfied with the value of the workshop and thought it should 
continue. They agreed that the next workshop should be held in the fall of 2011 in the San Francisco Bay Area 
and that the current format and length should be left unchanged. They suggested that XLDB5 cover reference 
cases, high performance visualization for extreme scale data, analytical (including extract-transform-load) tools, 
simulation data in science (e.g., climatology) and industry (e.g., automotive industry), and cloud computing. The 
“reference cases” were particularly highly demanded; participants envisioned an in-depth examination of at least 
two concrete examples of built systems, one where data is federated and one where data is kept in a single 
instance. They hope to learn about the architecture, fault tolerance and data replication strategies, and the tactics 
of getting daily analytical jobs done. The attendees suggested including representatives from health care, 
pharmaceutical research, the movie industry, the automotive industry, the census, and national intelligence. 
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GLOSSARY 

CEMI – Consortium for Electromagnetic Modeling and Inversion 
ETL – extract-transform-load 
DOE – Department of Energy 
GPU – Graphics Processing Unit 
ICDE – International Conference on Data Engineering 
JHU – Johns Hopkins University 
NASA – National Aeronautics and Space 
netCDF – Network Common Data Form 
NIH – National Institutes of Health 
RDBMS – Relational Data Base Management System 
SKA – Square Kilometer Array 
SSD – Solid State Disk 
TPC – Transaction Processing Performance Council 
UDF – User Defined Function 
USGS – U.S. Geological Survey 
XLDB – eXtremely Large Data Base 
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