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ABSTRACT

A review of issues in image compression is presented, with a strong focus on
the wavelet transform and other closely related multiresolution transforms. The
roles of information content, resolution scale, and image capture noise, are dis-
cussed. Experimental and practical results are reviewed.
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1 INTRODUCTION

We begin by reviewing the general principles which are used in compression,
including the following. Why the wavelet transform? How are computational
speed-ups obtained? What motivates one encoding approach over another? Can
other non-wavelet multiscale transforms be used?

A very common property of data which we can seek to exploit in order to
achieve good compression rates is a lack of variation between adjacent data
values. This principle in exploited in run-length encoding, where the data value
is coded along with the number of successive identical values. When there
is a background trend or seasonality, taking the difference between adjacent
values may result is a less changeable data stream. Pushing the latter principle
further implies that smoothing is usually beneficial (if we can allow ourselves
the luxury of doing that to our data). If we accept some amount of information
loss in compressing our data, then identity of adjacent values can be replaced
by similar adjacent values. Such similarity or correlation can be brought about
by the use of some appropriate transform. The discrete cosine transform is
one such transform, used in the JPEG image storage format which incorporates
compression. The wavelet transform makes use of a wavelet function which
is defined in both space and frequency, and in both of these dimensions it too
allows for “like with like” to be moved together in transform space. The wavelet
transform has good energy compacting properties, which means that in practice
values created in transform space are made larger or smaller (often zero in the
latter case) than in direct space.

The wavelet transform is used in the JPEG2000 standard for still images. This
standard uses as dyadic discrete wavelet transforms either the Le Gall 5/3 taps
reversible transform, or the Daubechies 9/7 taps non-reversible transform. A
useful review of wavelet-based compression, including code, can be found in
Welstead (1999). The lifting scheme, developed by Sweldens, is a flexible im-
plementation technique for wavelet transforms. Of particular importance for
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compression is the property of the lifting scheme that allows wavelet coefficients
to be maintained as integers for integer inputs. This has storage and computa-
tional benefits.

Other encoding stages include entropy coding, which includes arithmetic or
Huffman coding. The latter replaces data values with a variable-length code, to
advantageously use a short-length code for common data values, and a longer-
length code for uncommon data values. The overall entropy (average informa-
tion, —Yplogp where p is the probability of occurrence of the data value) is
thereby minimized.

In scalar quantization, pixel values are replaced with quantized “approximants”,
and vector quantization takes vectors of values and replaces them with a good-
fitting representative vector. In scalar quantization, assuming a Gaussian noise
model for one’s data, division by an integer times the standard deviation may be
a useful step prior to quantizing in that it meaningfully rescales signal. Lloyd-
Max (Proakis, 1995) is a well-known non-uniform quantization method (and is
essentially equivalent to k-means clustering).

Given that wavelet transforms, as we have noted, render many values small or
zero in transform space, it behoves us to exploit this in reading off the wavelet
coefficient values. This leads to wavelet coders, and more specifically to zero
trees. Targeted is the reading off of wavelet coefficients such that zero values
at high wavelet scales (i.e., low resolution) are followed by zero values at pro-
gressively lower wavelet scales. Shapiro’s EZW (embedded zero-tree wavelet)
coding algorithm is one such algorithm, which was refined in the SPTHT (set
partitioning in hierarchical trees) algorithm of Said and Pearlman. Worked
examples can be found in Welstead (1999) and Xiong & Ramchandran (2000).
Such embedded coding schemes draw benefit from wavelet coefficient properties,
and they may allow for progressive display. Progressive transmission consists of
visualizing quickly a low resolution image, and then increasing the quality with
the arrival of new bits.

In work reported on below, the following lossy compression approach was used:
(i) wavelet or other multiresolution transform, (ii) quantization which gives rise
to the loss of information, and (iii) Huffman coding. A major benefit of such
a straightforward compression algorithm is that fast image reconstruction at
lower (spatial) resolution levels can be supported.

Assessment of compression/decompression quality is generally carried out us-
ing global measures such as mean square error (MSE) or peak signal-to-noise
ratio (PSNR). For definitions of the latter, see section 5 below. Comparative
assessment results can be found in UCLA (1997).

In this article the type of image which is of interest is one containing smooth
features or point-like features. The discussion in this paper, and to some degree
the methods used, are all based on such images. Images containing pronounced
edges, which could perhaps be more typical of industrial vision, are not of
direct interest to us in this context. See Xiong & Ramchandran (2000) for some
discussion of wavelet-based approaches for addressing the compression of images
where edges are important.
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2 COMPRESSION SOFTWARE IN ASTRONOMY

In Louys, Starck, Mei, Bonnarel & Murtagh (1999a, see also Starck, Murtagh
& Bijaoui, 1998) we compared a range of powerful compression methods — frac-
tal, wavelet, pyramidal median, JPEG — with compression tools dedicated to
astronomy such as Hcompress, FITSpress and mathematical morphology, and
applied these to astronomical images.

2.1 Compression packages

Methods used in astronomy include Hcompress (White, Postman & Lattanzi,
1992), FITSpress (Press, 1992), and JPEG (Furht, 1995). These are all based
on linear transforms, which in principle help to reduce the redundancy of pixel
values in a block and decorrelate spatial frequencies or scales. Two other impor-
tant methods have also been proposed for astronomical image compression: one
using mathematical morphology, and another based on the pyramidal median
transform (a nonlinear transform). These will be looked at below. A specific
decompression postprocessing method has also been developed in Bijaoui, Bo-
bichon & Huang (1996) in order to reduce artifacts relative to the Hcompress
method. From the mainstream signal processing domain, two other recent ap-
proaches are worthy of attention. The first is based on fractals, and the second
uses a bi-orthogonal wavelet transform. We first briefly review all of these meth-
ods, and then compare them in the framework of astronomical images.

Hcompress: Hcompress (White et al., 1992) was developed at Space Telescope
Science Institute (STScl, Baltimore), and is commonly used to distribute archive
images from the Digital Sky Survey DSS1 and DSS2. It is based on the Haar
wavelet transform. The algorithm consists of

1. applying a Haar wavelet transform to the data,

2. quantizing the wavelet coefficients linearly as integer values,

w

. applying a quadtree to the quantized value, and
4. using a Huffman coder.

Sources are available at http://www.stsci.edu/software/hcompress.html.

Hcompress with iterative decompression: Iterative decompression was
proposed in Bijaoui et al. (1996) to decompress files which were compressed using
Hcompress. The idea is to consider the decompression problem as a restoration
problem, and to add constraints on the solution in order to reduce the artifacts.

FITSpress: FITSpress (Press, 1992) uses a threshold on very bright pixels and
applies a linear wavelet transform using the Daubechies-4 filters. The wavelet
coefficients are thresholded according to a noise threshold, quantized linearly
and runlength encoded. This was developed at the Center for Astrophysics,
Harvard. Sources (fitspress08.tar) are available at a number of locations on the
web.

JPEG: JPEG is the standard image compression package for single frame im-
ages (Furht, 1995). It decorrelates pixel coefficients within 8 x 8 pixel blocks
using the discrete cosine transform (DCT) and uniform quantization.

Wavelet transform: Various wavelet packages exist which support image
compression, leading to more sophisticated compression methods. The wavelet
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transform we used is based on a bi-orthogonal wavelet transform (using Antonini-
Daubechies 9/7 coefficients) followed by entropy coding.

Fractal transform: The image is decomposed into blocks, and each block is
represented by a fractal. See Fisher (1994) for more explanation.

Mathematical morphology: This method (Starck et al., 1998), denoted
MathMorph in this paper, is based on mathematical morphology (erosion and
dilation). It consists of detecting structures above a given level, the level being
equal to the background plus three times the noise standard deviation. Then,
all structures are compressed by using erosion and dilation, followed by quadtree
and Huffman coding. This method relies on a first step of object detection, and
leads to high compression ratios if the image does not contain a lot of what
we might characterize as “continuous” (or smoothly varying) information, as is
often the case in astronomy.

Pyramidal median transform: The principle of this compression method
(Starck, Murtagh, Pirenne & Albrecht, 1996; Starck et al., 1998) denoted PMT
here, is to select the information we want to keep, by using the pyramidal median
transform, and to code this information without any loss. Thus the first phase
searches for the minimum set of quantized multiresolution coefficients which
produce an image of “high quality”. The quality is evidently subjective, and we
will define by this term an image with no visual artifact in the decompressed
image; and the residual (original image — decompressed image) does not, contain
any evident structure.

Lost information cannot be recovered, so if we do not accept any loss, we have
to compress what we take as noise too, and the compression ratio will be low
(3 or 4 only).

The Pyramidal Median Transform (PMT) is obtained by the following algo-
rithm:

1. Let ¢; = f with 7 = 1. f is the original image.

2. Determine ¢}, = med(c;,2s + 1) with s = 1. Here med(c;,2s + 1) is the
convolution of image ¢; with a median kernel of square dimensions 2s + 1.

3. The pyramidal multiresolution coefficients w;4; are defined as: wj;1 =
¢j — Ciy1-

4. Let cj41 = dec(c;-‘H) where the decimation operation, dec, entails 1 pixel
replacing each 2 x 2 subimage.

5. Let j «— j + 1. Return to Step 2 so long as j < S.

Here the kernel remains the same during the iterations. The image itself, to
which this kernel is applied, becomes smaller.

While this algorithm is computationally efficient, for ability to exactly recon-
struct the input data we must use the following algorithm based on B-spline
interpolation:

1. Take the lowest scale image, c;.

2. Interpolate ¢; to determine the next resolution image (of twice the dimen-
sionality in = and y). Call the interpolated image c/.
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3. Calculate ¢j_; +— c;- + wj.

4. Set j «— j — 1. Go to Step 2if j > 0.

This reconstruction procedure takes account of the pyramidal sequence of im-
ages containing the multiresolution transform coefficients, w;. It presupposes,
though, that a good reconstruction is possible. We ensure that by use of the
following refined version of the Pyramidal Median Transform: using iteration,
the coeflicients, wj41 = ¢j — ¢j41, are improved relative to their potential for
reconstructing the input image.

2.2 Remarks on these methods

The pyramidal median transform (PMT) is similar to the mathematical mor-
phology (MathMorph) method in the sense that both try to understand what is
represented in the image, and to compress only what is considered as significant.
PMT uses a multiresolution approach, which allows more powerful separation
of signal and noise. The latter two methods are both implemented in the MR
software environment (MR1, 1999).

Each of these methods belongs to a general scheme where the following steps
can be distinguished:

1. Decorrelation of pixel values inside a block, between wavelength, scales or
shape, using orthogonal or nonlinear transforms.

2. Selection and quantization of relevant coefficients.

3. Coding improvement: geometrical redundancy reduction of the coeffi-
cients, using the fact that pixels are contiguous in an array.

4. Reducing the statistical redundancy of the code.

How each method realizes these different steps is indicated in Table 1.

Clearly these methods combine many strategies to reduce geometrical and sta-
tistical redundancy. The best results are obtained if appropriate selection of
relevant information has been performed before applying these schemes.

For astronomical images, bright or extended objects are sought, as well as faint
structures, all showing good spatial correlation of pixel values and within a wide
range of graylevels. Noise background, on the contrary, shows no spatial corre-
lation and fewer graylevels. The removal of noisy background helps in regard to
data compression of course. This can be done with filtering, graylevel thresh-
olding, or coarse quantization of background pixels. This is used by FITSpress,
PMT and MathMorph which divide information into a noise part, estimated
as a Gaussian process, and a highly correlated signal part. MathMorph simply
thresholds the background noise estimated by a 3-sigma clipping, and quan-
tizes the signal as a multiple of sigma (Huang & Bijaoui, 1991). FITSpress
thresholds background pixels and allows for coarse background reconstruction,
but also keeps the highest pixel values in a separate list. PMT uses a multi-
scale noise filtering and selection approach based on noise standard deviation
estimation. JPEG and Hcompress do not carry out noise separation before the
transform stage.
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Table 1: Description and comparison of the different steps in the compression
packages tested.

Software Transform | Coefficient | Coefficient | Geometrical | Statistical
quantiz. | organisation | redundancy | redundancy
reduction reduction
JPEG DCT Linear Zigrag Runlength Huffman
88 pixels sequence coding
Hcompress Haar Linear Pyramidal | Quadtree on Huffman
2x2 pixels bitplanes
FITSpress Wavelets Linear Increasing Runlength Huffman
Daub-4 Resolution coding
MR/1 Pyramidal Linear / Decreasing | Quadtree on Huffman
PMT Med. Trans. | Noise est. Resolution bitplanes
MR/1 Erosion/ Linear / Quadtree on | Huffman
MathMorph Dilation Noise est. - bitplanes

2.3 Identifying the information loss

Apart from signal-to-noise discrimination, information losses may appear after
the transforms at two steps: coefficient selection and coefficient quantization.
The interpretable resolution of the decompressed images clearly depends upon
these two steps.

If the spectral bandwidth is limited, then the more it is shortened, the better
the compression rate. The coefficients generally associated with the high spatial
frequencies related to small structures (point objects) may be suppressed and
lost. Quantization also introduces information loss, but can be optimized using
a Lloyd-Max quantizer for example (Proakis, 1995).

All other steps, shown in Table 1, such as reorganizing the quantized coefficients,
hierarchical and statistical redundancy coding, and so on, will not compromise
data integrity. This statement can be made for all packages. The main im-
provement clearly comes from an appropriate noise/signal discrimination and
the choice of a transform appropriate to the objects’ signal properties.

3 EVALUATION

In identifying the needs for compression, different strategies can be used.

1. Compression without visual loss. This means that one cannot see the dif-
ference between the original image and the decompressed one. Generally,
compression ratios between 10 and 20 can be obtained.

2. Good quality compression: the decompressed image does not contain any
artifact, but some information is lost. Compression ratios up to 40 can be
obtained in this case.

3. Fixed compression ratio: for some technical reasons, one may decide to
compress all images with a compression ratio higher than a given value,
whatever the effect on the decompressed image quality.
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Table 2: List of criteria for comparison of compression methods for various types
of astronomical image-based application. Recal. = recalibration.

Application type Quick Catalog | Source Deep Recal.
view overlay: | ext. and | detection
cross- Cross-id.

Comparison criterion corr.
quality: visual medium | high medium indifferent | high
quality: precision low medium high very high | high
Transfer + comp. speed very fast | fast medium slow medium
Progressive vision yes yes no no no

4. Signal-to-noise separation: if noise is present in the data, noise modeling
can allow very high compression ratios just by including some type of
filtering in the transform space during the compression.

Following the image types, and the selected strategy, the optimal compression
method may vary.

3.1 Quality assessment

In order to compare the different compression methods, various characteristics
are of importance (see Table 2).

Progressive vision is useful in the context of quick views (for example on the web)
and image overlays, where the user can decide when the quality of a displayed
image is sufficient. However this feature is not required for more quantitative
tasks.

The requirement of speed of display (transfer time plus processing time) is
usually critical for applications related to progressive vision.

The estimation of the quality of a compression method and rate compared to
others is based on the quality of restitution of the relevant information, which
is always relative to the type of application. For good quality quick views of a
given area, label and image database overlays, and cross-correlation of features
at different wavelengths, the required quality will be essentially qualitative: good
geometry of the objects, no visual artifacts, good contrast, etc.

For cross-identification processes, and any situation where recalibration to im-
prove astrometry and photometry is needed, or reprocessing of object detection
where some were obviously missed, or false merging of distinct objects — for
such cases, quality estimation must be a quantitative process. The loss of in-
formation can be measured by the evolution of “relevant parameters” varying
according to compression rate and method.

Quality criteria which can be used for estimating the merits and performances
of a compression method fall under these headings: Visual aspect, signal-to-
noise ratio, detection of real and faint objects or features, object morphology,
astrometry, and photometry.

In our studies, quality was quantified from visual fidelity, and from photomet-
ric (i.e., integrated intensity) and astrometric (i.e., positional) measurements.
Computational requirements of each method were noted. We also reviewed the
implications of web-based storage and transmission, stressing the importance of
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progressive vision. In Louys, Starck & Murtagh (1999b) we summarized loss-
less compression algorithms. Figures 1 and 2 illustrate these results. Figure 3
shows the results of astrometry (positional information) testing. Tables 1 and
2 summarize these results.

Lossless compression is based on the Haar wavelet transform, implemented with
the lifting scheme, and followed by entropy coding. Lower resolution versions
of the image data, in the context of this transform, correspond to average val-
ues in larger image areas. Photometric properties of a lower resolution image
are therefore exact averages of the photometric measurements made at finer
resolution levels.

Figure 1: Left: Original image, subimage extracted from 1024x1024 patch,
extracted in turn from the central region of ESO7992v, a digitized Schmidt
photographic plate. Right: JPEG compressed image at 40:1 compression rate.

An important aspect of lossy compression in the case of medical and scientific
images is that noise be accurately defined and removed. Extensive modeling of
noise for use in image compression, filtering, deconvolution and other operations,
is supported in the MR software environment (MR1, 1999; see also Starck et al.
1998).

We have comprehensively examined compression performance on large numbers
of astronomy images. Consider for example a 12451 x 8268 image from the
CFH12K detector at the CFHT (Canada-France-Hawaii Telescope), Hawaii. See
Figure 4. A single image is 412 MB. As astronomy detectors tend towards
16000 x 16000 in image dimensions — the case of the UK’s Vista telescope now
being designed for operation in Chile for instance — it is clear that compression
and delivery technologies are very much needed. A typical observing night gives
rise to terabytes of data, and image repositories are measured in petabytes.

Using denoising (visually lossless) compression, we compressed the CFH12K
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Figure 2: Left: MathMorph-compressed image of the same patch, at 203:1
compression rate. Right: PMT-compressed image at 260:1 compression rate.

Astrometry test for JIPEG ,MathMorph and PMT
T T

0.7 T T
"JPEG_40° ——
"PMT_260' -
'MathMorph_210" ------
0.6 |- ’Catalog_precision’ -~
0.5 - B
0.4 - r B

Position error in pixels

10 12 14 16 18 20
Magnitude

Figure 3: Mean error in astrometry, by interval of 0.25 magnitude, for images
compressed 40 times by JPEG, 260 times by PMT, and 210 times for Math-
Morph.



120

Table 3: Compression of a 1024 x 1024 16-bit integer image. Platform: Sun
Ultra-Enterprise, 250 MHz. Noted are whether artifacts are created, typical
compression ratios obtained, and whether progressive transmission implemen-
tations are currently available.

Compression | Decompression | Artifact | Compression | Progressive
time (secs.) time (secs.) ratio transmission
JPEG 1.17 4.7 Y <40 Y (in C)
Wavelet 45 7.1 Y 270 N
Fractal 18.3 9 Y < 30 N
Mathematical 13 7.86 N < 210 N
Morphology
Hcompress 3.29 2.82 Y 270 Y (in C)
Hcompress 3.29 77 N 270 N
+ iterative
reconstruction
Pyramidal 7.8 3.1 N 270 Y (in Java)
Median Trans.

image to 4.1 MB, i.e. less than 1% of its original size. Compression took 789
seconds on an Ultra-Sparc 10. Decompression to the fifth resolution scale (i.e.,
dimensions divided by 2°) took 0.43 seconds. For rigorously lossless compression,
compression to 97.8 MB, i.e. 23.75% of the original size, took 224 seconds,
and decompression to full resolution took 214 seconds. Decompression to full
resolution by block was near real-time.

4 DECOMPRESSION BY SCALE AND BY REGION

Support of the transfer of very large images in a networked (client-server) set-
ting requires compression and prior noise separation. In addition, progressive
transfer may be supported, or delivery by scale and by image region. For such
additional functionality, wavelet transform based methods are very attractive
because they integrate a multiresolution concept in a natural way. Our MR
software system (MR1, 1999) contains a “LIVE: Large Image Visualization En-
vironment” prototype, which is Java-based at the client end, and allows access
to differing resolution levels as well as block-sized regions of the compressed
image data. Figure 5 exemplifies the overall design of a system allowing for
decompression by resolution scale and by region block.



121

Table 4: Compression of a 1024 x 1024 16-bit integer image. Platform: 2-
processor Sun Ultra-Sparc 250 MHz.

Software Compression | Decompression | Compression
time (secs.) time (secs.) ratio
JPEG 2.0 0.7 1.6
lossless
Lifting scheme 4.3 4.4 1.7
with Haar
Gzip (Unix) 13.0 1.4 1.4

Systems have been prototyped which allow for decompression at full resolu-
tion in a particular block, or at given resolutions in regions around where
the user points to with a cursor. The former is shown in Figure 6. Rigor-
ously lossless compression is obtained, to 4.9% of original image size. Decom-
pression is carried out in effective real time of a region of interest surround-
ing the tibia fracture site. A description of this work can be found in Farid,
Murtagh, Louys & Starck (2001), and the on-line demonstrator is available at
http://strule.cs.qub.ac.uk/imed.html

5 APPLICATION TO MEDICAL IMAGE COMPRESSION

Table 5: Compression results on image shown in Figure 6. Accumulated user
times in seconds on 350 MHz Sparc workstation. Input image size (at 16 bits
per pixel): 7,535,520 bytes. bpp = bits per pixel, with 16 as the value pertaining
to the input image. MSE = mean square error. PSNR = peak signal to noise
ratio (see text for definitions of 1 and 2).

Bi-orthogonal Pyramidal Lossless
9/7 median Haar / lifting
compression 11 secs. 10 secs. 5 secs.
time
decompression 15 secs. 6secs. 6 secs.
time
size (bytes) 125,225 311,792 732,266
compression 1.66% 4.14% 9.72%
ratio
compression 0.266 0.662 1.555
bpp
MSE 0.78 0.76 -
PSNR (1) 97.40 dB 97.52 dB -
PSNR (2) 193.73 dB 193.85dB -

Figure 6 shows a fractured tibia with an intramedullary nail fitted, to aid in
recovery. This image is originally of dimensions 2040 x 1760 in DICOM 16-bit
unsigned integer format. Results are quoted relative to this.

A bi-orthogonal Antonini-Daubechies wavelet transform with 9/7 tap filters was
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Figure 4: CFHT image of dimensions 12451 by 8268 used for compression timing
experiments.

used for lossy compression, and as an alternative the pyramidal median trans-
form. Lossless compression is based on the lifting scheme which can guarantee
that integer values are used at all times, and the Haar wavelet transform.

Visual results of uncompressed images following lossy compression are excel-
lent. Table 5 presents quantitative results. In all cases, compression was
carried out blockwise, with block dimension 128. Definition 1 of PSNR is
101log, (655362 /MSE) and definition 2 of PSNR is 20 log; ,(65536° /RMS), where
MSE and RMS are mean square error, and root mean square error, respectively.
The image used has a lot of “background”, which explains why the results are
so dramatically good — indeed, even for lossless compression.

Digital, or digitized, mammograms can be very large. As an example, digitizing
a mammogram film at 42 micron steps can yield an image of dimensions 4240 x
5670, and at 16 bits per pixel, that implies a file size of 48 MB.

Figure 7 shows a 512 x 512 subimage extracted from a mammogram. Lossless
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Figure 5: Example of large image, compressed by block, and represented at five
resolution levels. At each resolution level, the visualization window is super-
imposed at a given position. At low resolution, the window covers the whole
image, while at the full resolution level, it covers only one block.

compression, again based on the Haar wavelet transform implemented with the
lifting scheme, provided for compression to 17% of the original image size, and
was near real-time (i.e., rounded, 0 seconds). Decompression was also near real-
time. The decompressed image was rigorously identical to the input image. In
bits per pixel, this lossless compression performance was 0.34 bpp.

Lossy compression which improved on these compression rates by a factor of
two required 1 second to carry out.

In the case considered, rigorously lossless compression has provided excellent
results. More typical lossless compression rates are as shown in Table 4. In
this case, compression strategies such as the following may be of use. First,
provide quick view functionality, based on lossy compressed images. Secondly,
provide access to the “completion” of the image, by adding in the difference map
between original data and lossy compressed data. Such an approach is premised
on the fact that some, and maybe considerable, assessment and diagnosis can
be carried out on the visually lossless image data. On demand, the user has
access to the full data.

6 CONCLUSION

In this article we have presented outstanding compression and decompression
results on very large scientific images. We have described demonstrator systems
which we have implemented for web-based real-time decompression and the
delivery of image regions of interest.

Wavelets and multiscale transforms offer many advantageous properties: a frame-
work for excellent quality when coding or encoding information; easy incorpora-
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tion of noise models which are crucial for lossy, visually acceptable compression;
controlled and scalable implementation and operation; and targeted dissemina-
tion, delivery and display.

This algorithmic framework is well-adapted for the support of access to, and
scientific analysis of, large image repositories.
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Figure 6: X-ray image of patient leg with intramedullary nail.
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Figure 7: Part of a digitized mammogram, shown histogram-equalized.



