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ABSTRACT 
 
Bayes estimates of the unknown parameter and the reliability function for the generalized exponential model are 
derived. Bayes estimates are obtained under various losses such as the squared error, the absolute error, the 
squared log error, and the entropy loss functions. Monte Carlo simulations are presented to compare the Bayes 
estimates and the maximum likelihood estimates of the unknown parameter and the reliability function. 
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1         INTRODUCTION 
 
Gamma and Weibull distributions are the most popular distributions for life data analysis. One of the major 
disadvantages of the gamma distribution is that its distribution and survival functions cannot be expressed in a 
closed form if the shape parameter is not an integer. Moreover, there are terms involving the incomplete gamma 
function, and thus, the distribution, survival, or hazard functions need to be obtained by numerical integration. This 
makes the gamma distribution unpopular compared to a Weibull distribution, which has a nice closed form for 
hazard and survival functions. On the other hand, the Weibull distribution has its own disadvantages. For example, 
Bain and Engelhardt (1991) have pointed out that the maximum likelihood estimators of a Weibull distribution 
might not behave properly for all parameter ranges. 
 
Generalized exponential (GE) distribution has been used as an alternative to gamma and Weibull distributions in 
many situations by Gupta and Kundu (1999). The probability density function (pdf) and cumulative distribution 
function (cdf) of the one-parameter GE distribution are given, respectively, by  
 

0,0,)1(),( 1 >>−= −−− θθθ θ xeexf xx                                                                                    (1) 
 

and 
 

.0,0,)1(),( >>−= − θθ θ xexF x                                                                                               (2) 
 

Here, θ is the shape parameter. When θ = 1, the above distribution corresponds to the exponential distribution. It is 
important to mention here that when θ is a positive integer, the GE cdf is the cdf of the maximum of a random 
sample of size θ from the standard exponential distribution.  Due to the simple structure of its distribution function, 
the GE distribution can be used quite effectively in analyzing any lifetime data, especially in the presence of 
censoring or if the data is grouped.  
 
The reliability function of the distribution, at some t is given by 
 

.)1(1)( θtetR −−−=  
 

The GE distribution has been studied extensively by Gupta and Kundu (1999, 2008), Raqab (2002), Raqab and Madi 
(2005), Jaheen (2004), and Singh et al. (2008). 
 
In studying failure models, from the Bayesian point of view, the parameter is considered as a random variable 
having a specified prior distribution. After a sample has been observed, several estimates can be derived from the 
posterior distribution. The loss function is used to represent a penalty associated with each of the possible estimates. 
Traditionally, most authors use the simple squared error loss function and obtain the posterior mean as the Bayesian 

Data Science Journal, Volume 8, 24 October 2009

217



estimate. However, in practice, the real loss function is often not symmetric. For example, Feynman (1987) remarks 
that in the space shuttle disaster, the management may have overestimated the average life or reliability of solid fuel 
rocket boosters. The consequences of overestimates, in loss of human life, are much more serious than the 
consequences of underestimates. In this case, an asymmetric loss function might have been more appropriate. In 
recent years, many authors have considered asymmetric loss functions in reliability, such as Basu and Ebrahimi 
(1991), Moore and Papadopoulos (2000), Soliman (2005), and Ren et al. (2006). 
 

The purpose of this paper is to study the GE model from the Bayesian point of view under various losses, such as the 
squared error, the absolute error, the squared log error loss, and the entropy loss functions. In Section 2, the loss 
functions and the priors are described.  In Section 3, we obtain Bayes estimates of θ and the reliability function 
under each of these loss functions. We choose a conjugate prior for θ, which includes the Jeffreys prior as a special 
case. In Section 4, we use the Kolmogorov-Smirnov (KS) goodness of fit test to test the hypothesis that our 
estimates for θ, under the different approaches, are a good approximation for the true value of  θ. Finally, in Section 
5, the different Bayes estimates are compared with the maximum likelihood estimates (MLEs) via Monte Carlo 
simulations, and some concluding remarks are provided. 
 
2         LOSS FUNCTIONS AND PRIORS 
 
To estimate an unknown parameter θ and reliability function, four loss functions are considered. The first is the 
common squared error loss given by 
 

,)ˆ(),ˆ( 2
1 θθθθ −=L                                                                                                                                (3) 

where θ̂  is the  estimate of the parameter θ. The second is the absolute error loss given by 
 

.|ˆ|),ˆ(2 θθθθ −=L                                                                                                                                  (4) 
   

The next is the squared log error loss function introduced by Brown (1968): 

.)lnˆln()
ˆ

ln(),ˆ( 22
3 θθ

θ
θθθ −==L                                                                                (5) 

This loss function places little weight on estimates whose ratios to the true value are close to one and proportionately 
more weight on estimates whose ratios to the true value are significantly different from one. 
 

The last loss function is the entropy loss given by  

 .1)
ˆ

ln()
ˆ

(),ˆ(4 −−=
θ
θ

θ
θθθL                                                                                                          (6) 

In order to consider a Bayesian analysis, the conjugate prior of  θ is considered, i.e., θ ~ Gamma (α , β), whose 
probability density function is given by 
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e                                                                                       (7) 
 

where  α > 0 and β > 0 are know hyper-parameters. If α = β = 0, prior (7) becomes the Jeffreys prior, which is given 
as follows: 

.0,1)( >∝ θ
θ

θπ                                                                                                       (8) 
 

3         BAYES ESTIMATION  
 
In order to estimate θ and the reliability function, a life test is conducted on n items, and as each failure occurs, the 
time is recorded. Suppose that x = (x1,  x2, …, xn) is the observed lifetimes of the n items. When all n items have failed, 
the test ends. The likelihood function, is given by 
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where 
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=
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 From (9), the maximum likelihood estimates (MLEs) of θ and R(t) are given, respectively, by 

)(
ˆ

xs
n

MLE =θ                                                                                                                     (10) 

and                                                                                                              
.)1(1)(ˆ ˆ

MLEt
MLE etR θ−−−=                                                                                              (11)    

  
Now, we want to find Bayes estimates under loss functions Li; i=1,2,3,4. Under the conjugate prior (7), the posterior 
distribution for θ is θ ~ Gamma (n + α ,  β + s(x)). Clearly, the Jeffreys prior (8) is a special case of (7) when α = β = 
0, under which the posterior distribution of θ is Gamma (n, s(x)). 
 
3.1      Estimation of θ  
 
For the squared error loss L1, under prior (7), the Bayes estimate of θ is the posterior mean, 
 

.
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=
β

αθ                                                                                                                  (12) 

 It is easy to see that the MLE of θ̂  is the same as θ１ under the Jeffreys prior (8). The Bayes estimate of   θ  under 
the absolute error loss L2 and prior (7) is the median of the posterior distribution. Since the posterior distribution is 
gamma, the Bayes estimate of θ is 

,
))((2

ˆ )(2
2 xs

m n

+
= +

β
θ α                                                                                         (13) 

where )(2 α+nm  is the median of  a chi-square pdf with  2(n + α) degrees of freedom, provided 2(n + α) is an 
integer. 
 
For the squared log error loss L3 and prior (8), the Bayes estimate of θ  is 
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where )(ln)( x
dx
dx Γ=ψ  is the digamma function. 

The Bayes estimate of θ under the entropy loss L4 and prior (8) is  
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3.2       Estimation of )(tR  
 
Analogous to the four loss functions in estimating θ, we may now use the four loss functions for estimating the 
reliability function .)1(1),()( θθ tetRtR −−−==  
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For the squared error loss 1L , the Bayes estimate for the reliability function R(t) under the prior (8), is given by 
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Here (.)|xMθ  is the moment generating function of the posterior distribution of θ. For estimating the reliability 

function ),( θtR  under the absolute error loss 2L , since ),( θtR  is a monotonic function of θ, then the Bayes 

estimate of ),( θtR  is of the form )ˆ,( 2θtR  where 2̂θ  is the posterior median of  θ. Thus, the Bayes estimate of 

)(tR  under the absolute error loss 2L  is given by  
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θtetR −−−=                                                                                                      (17) 

Under the squared log error loss 3L  and prior (8) and using the fact that  
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the Bayes  estimate of )(tR  can be shown to be  
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Finally, the Bayes estimate of )(tR  with the gamma prior Gamma (α , β) under the entropy loss 4L  is given by  
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On using the Maclaurin series expansion, ,])1(1[
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Thus, the Bayes estimate of )(tR  under the loss L4 is  
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4          KOLMOGOROV-SMIRNOV GOODNESS OF FIT TEST  
 
In this section, the Kolmogorov-Smirnov (KS) goodness of fit test is used to check the validity of the hypothesis that 
the samples are from a GE distribution. This test examines a random sample nxxx ,...,, 21  from some unknown 
distribution in order to test the null hypothesis that the unknown distribution is in fact a specified function, 
say )(xF ∗ . The KS goodness of fit test compares the empirical distribution )(xFn  with the hypothesized 

parameterized distribution )(xF ∗   where 
*

)1()( θxexF −∗ −= , 

and *θ  is given by one of the equations (10), (12), (13), (14), or (15).  
 

Suppose that we would like to test hypotheses )()(:0 xFxFH ∗=  versus .)()(:1 xFxFH ∗≠  Define the 

random variable nD   as follows  

,)()(sup * xFxFD nxn −=  

which is in fact the maximum difference between the empirical distribution )(xFn   and  the hypothesized 

parameterized distribution )(xF ∗ . The null hypothesis 0H  is rejected, at the level of significanceγ  if the test 

statistic nD  exceeds the γ−1 quantile given by the appropriate table.  We use the KS goodness of fit test to test the 
hypothesis that our different estimates for θ, under the different approaches, are a good approximation to the true 
value of θ. 
 
5          SIMULATION AND CONCLUDING REMARKS 
 
In this section, a Monte Carlo simulation study was carried out to compare the performance of the different Bayes 
estimates and the MLEs. The mean square error (MSE) was used to compare the estimates.  
 
The ML and Bayes estimates were compared based on a Monte Carlo simulation as follows: 

1. For given values of α and β, we generated θ from the gamma prior pdf (7).  
2. Using the value of θ from step 1, we generated a sample of size n from the GE pdf in (1). 
3. Different estimates for the parameter  θ  and the reliability function were computed from the generated 

sample. Furthermore, the KS goodness of fit statistic was calculated for the estimates of θ and the decision 
to reject or not reject the null hypothesis was noted. 

4. Steps 1-3 were repeated 5000 times, and average values and MSEs of the estimates were computed over the 
5000 repetitions.  

 
Tables 1-6 give the number of times that under the Kolmogorov criterion we did not reject the null hypothesis that 
the data were sampled from a GE distribution with parameters θ, γ  = 0.05. Below this, the generated values of θ (as 
the true values of θ), the average value of the estimates for θ, and the mean square error are given. Tables 1-3 give 
the results for α = 3 and β = 2. Tables 4-6 give the results for α = 0.5 and β = 1.5. We considered n = 10, 20, and 50. 
Note that GP stands for gamma prior and IP for improper prior. The last part of the table gives the estimates of the 
reliability and the associated mean square error for varying times. From the results, we observe the following. 
 

(1) From the KS goodness of fit test, we can conclude that the Bayesian and maximum likelihood estimators 
(MLEs) for θ and R(t) lead to good approximations for the parameters and reliability functions for the GE 
distribution.   
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(2) Tables 1-6 show that the Bayes estimates are better than the MLEs (in the sense of MSEs). Also, the MSEs 
decrease as n increases.  

(3) From Tables 1-3, for α = 3 and β = 2, we observe that the gamma prior overestimates the parameter θ, 
under the squared error, the absolute error, and the squared log error loss functions but underestimates the 
same parameter under the entropy loss function. It is also observed that the improper prior overestimates 
the parameter θ, under most of the loss functions considered. From Tables 4-6, for α = 0.5 and β = 1.5, we 
observe that the gamma prior underestimates the parameter θ under the different loss functions, but the 
improper prior overestimates the same parameter. 

(4)  In general, for α = 3 and β = 2, the Bayes estimators under the gamma prior have smaller MSEs than the 
improper Bayes, which have less than or equal MSEs to the MLE. We also observe that the entropy loss 
function does give the smallest MSEs in this case. For α = 0.5 and β = 1.5, the proper and improper Bayes 
estimators have smaller MSEs than the MLE.  In this case, the squared error loss function does give the 
smallest MSEs.  

(5) We observe that the Bayes estimates of θ under the squared error loss function and improper prior reduce 
to the MLEs. 

 
 
Table 1.  KS results, average values, and MSE for estimates for n = 10, α = 3, and β = 2 
 
KS Exact MLE Squared error Absolute error Squared  Log Entropy 

   GP IP GP IP GP IP GP IP 
Number of times accept 0H           

 4990 4988 4990 4989 4993 4993 4994 4993 4995 
Parameter           

 1.6091 1.7997 1.6819 1.7997 1.639 1.7401 1.6176 1.7105 1.5525 1.6197

  0.4596 0.173 0.4596 0.1601 0.4128 0.1552 0.3926 0.1461 0.3429

Reliability time           

1 0.5220 0.5451 0.5197 0.5313 0.5209 0.5336 0.5106 0.5198 0.5010 0.5074

  0.0131 0.0064 0.0116 0.0068 0.0126 0.0066 0.0117 0.0069 0.0121

1.5 0.3339 0.3574 0.3381 0.3509 0.3356 0.3481 0.3297 0.3400 0.3210 0.3285

  0.0092 0.0041 0.0084 0.0042 0.0086 0.0040 0.0080 0.0040 0.0078

2 0.2086 0.2270 0.2138 0.2243 0.2108 0.2205 0.2074 0.2159 0.2010 0.2072

  0.0049 0.0020 0.0046 0.0020 0.0045 0.0019 0.0042 0.0019 0.0039

 
 
Table 2.  KS results, average values and MSE for estimates for n = 20, α = 3, and β = 2 
 
KS Exact MLE Squared error Absolute error Squared  Log Entropy 

   GP IP GP IP GP IP GP IP 
Number of times accept 0H           

 4989 4989 4989 4993 4992 4993 4993 4994 4994
Parameter           

 1.6045 1.6856 1.6479 1.6856 1.6241 1.6576 1.6122 1.6437 1.5763 1.6014

  0.1627 0.1073 0.1627 0.1028 0.1538 0.1009 0.15 0.0972 0.1409

Reliability time           

1 0.5209 0.5312 0.5196 0.5245 0.5203 0.5254 0.5145 0.5187 0.5092 0.5126

  0.0064 0.0044 0.0060 0.0046 0.0063 0.0045 0.0061 0.0046 0.0062

1.5 0.3331 0.3435 0.3357 0.3405 0.3343 0.3389 0.3310 0.3350 0.3261 0.3294
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  0.0041 0.0027 0.0039 0.0028 0.0039 0.0027 0.0038 0.0027 0.0037

2 0.2081 0.2161 0.2112 0.2149 0.2095 0.2130 0.2076 0.2108 0.2040 
 

0.2066

  0.0020 0.0013 0.0019 0.0013 0.0019 0.0013 0.0018 0.0013 0.0018

Table 3.  KS results, average values and MSE for estimates for n = 50, α = 3, and β = 2 
 
KS Exact MLE Squared error Absolute error Squared  Log Entropy 

   GP IP GP IP GP IP GP IP 
Number of times accept 0H           

 4979 4980 4979 4982 4980 4982 4982 4983 4983 
Parameter           

 1.6051 1.6367 1.6264 1.6367 1.6162 1.6258 1.6111 1.6204 1.5957 1.604 
 

  0.0552 0.0473 0.0552 0.0463 0.0539 0.046 0.0534 0.0451 0.0521

Reliability time           

1 0.5211 0.5253 0.5210 0.5227 0.5212 0.5230 0.5187 0.5203 0.5165 0.5179

  0.0025 0.0021 0.0024 0.0021 0.0024 0.0021 0.0024 0.0021 0.0024

1.5 0.3332 0.3374 0.3347 0.3362 0.3341 0.3356 0.3327 0.3340 0.3306 0.3318

  0.0015 0.0013 0.0015 0.0013 0.0015 0.0013 0.0014 0.0013 0.0014

2 0.2082 0.2113 0.2098 0.2109 0.2091 0.2101 0.2083 0.2093 0.2067 0.2076

  0.0007 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007

 
 
 
 
Table 4.  KS results, average values and MSE for estimates for n = 10, α = 0.5, and β = 1.5 
 
KS Exact MLE Squared error Absolute error Squared  Log Entropy 

   GP IP GP IP GP IP GP IP 
Number of times accept 0H           

 4658 4886 4658 4904 4736 4910 4763 4899 4863 
Parameter           

 1.4476 1.6058 1.334 1.6058 1.2919 1.5526 1.2710 1.5262 1.2069 1.4452

  0.3527 0.1434 0.3527 0.1467 0.3173 0.1497 0.3021 0.1648 0.2654

Reliability time           

1 0.4852 0.5064 0.4412 0.4943 0.4403 0.4952 0.4300 0.4827 0.4180 0.4701

  0.0128 0.0086 0.0114 0.0091 0.0122 0.0097 0.0114 0.0111 0.0117

1.5 0.3061 0.3268 0.2792 0.3213 0.2756 0.3181 0.2698 0.3109 0.2601 0.2999

  0.0082 0.0045 0.0075 0.0047 0.0077 0.0049 0.0071 0.0056 0.0069

2 0.1898 0.2056 0.1737 0.2034 0.1702 0.1996 0.1670 0.1955 0.1605 0.1876

  0.0041 0.0020 0.0039 0.0021 0.0038 0.0021 0.0035 0.0024 0.0033
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Table 5.  KS results, average values and MSE for estimates for n = 20, α = 0.5 and β = 1.5  
 
KS Exact MLE Squared error Absolute error Squared  Log Entropy 

   GP IP GP IP GP IP GP IP 
Number of times accept 0H           

 4987 4995 4987 4995 4989 4995 4991 4993 4995 
Parameter           

 1.4422 1.5189 1.3905 1.5189 1.3679 1.4936 1.3567 1.4811 1.3226 1.4429

  0.1375 0.0889 0.1375 0.0890 0.1300 0.0894 0.1267 0.0923 0.1188

Reliability time           

1 0.4839 0.4952 0.4617 0.4893 0.4615 0.4895 0.4559 0.4834 0.4499 0.4772

  0.0063 0.0050 0.0059 0.0052 0.0061 0.0053 0.0059 0.0057 0.0060

1.5 0.3052 0.3157 0.2920 0.3132 0.2902 0.3115 0.2871 0.3080 0.2820 0.3026

  0.0037 0.0027 0.0036 0.0028 0.0036 0.0028 0.0035 0.0030 0.0034

2 0.1892 0.1971 0.1815 0.1961 0.1797 0.1942 0.1779 0.1922 0.1744 0.1883

  0.0018 0.0012 0.0017 0.0012 0.0017 0.0013 0.0016 0.0013 0.0016

 
Table 6. KS results, average values and MSE for estimates for n = 50, α = 0.5 and β = 1.5 
 
KS Exact MLE Squared error Absolute error Squared  Log Entropy 

   GP IP GP IP GP IP GP IP 
Number of times accept 0H           

 4984 4994 4984 4994 4985 4994 4987 4992 4991 
Parameter           

 1.4453 1.4765 1.4268 1.4765 1.4174 1.4667 1.4127 1.4618 1.3985 1.4470

  0.0471 0.0396 0.0471 0.0395 0.0460 0.0396 0.0455 0.0399 0.0443

Reliability time           

1 0.4847 0.4896 0.4760 0.4873 0.4759 0.4873 0.4736 0.4849 0.4712 0.4824

  0.0024 0.0022 0.0024 0.0022 0.0024 0.0022 0.0024 0.0023 0.0024

1.5 0.3057 0.3102 0.3007 0.3092 0.3000 0.3085 0.2987 0.3071 0.2966 0.3050

  0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0013 0.0012 0.0013

2 0.1896 0.1928 0.1867 0.1925 0.1859 0.1917 0.1852 0.1909 0.1837 0.1894

  0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0006 0.0006
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