
 Data Science Journal, Volume 3, 3 November 2004 114

APPLICATION OF XML TECHNOLOGIES TO TELEMETRY
DATA MANAGEMENT IN TEST EQUIPMENT FOR SCIENTIFIC
SATELLITE MISSIONS

Enrico Franceschi1,2 *, Andrea Bulgarelli1, Fabio Grandi2, Fulvio Gianotti1,
and Massimo Trifoglio1

1 IASF.BO, Space Astrophysics and Cosmic Physics Institute – Section of Bologna, CNR, Via P.
Gobetti 101, I-40129 BOLOGNA, Italy
Email: franceschi@bo.iasf.cnr.it
2 IEIIT.BO, Electronics and Engineering of Information and Telecommunication Institute – Section of
Bologna, CNR and DEIS, University of Bologna, Viale Risorgimento 2, I-40136 BOLOGNA, Italy
Email: fgrandi@deis.unibo.it

ABSTRACT

The development of a space mission requires the implementation of several Test Equipments which
simulate data flows for a specific payload. This paper describes a project involving the adoption of
XML-related technologies in the management of those data flows arranged into telemetry packets.
The project is mainly made up of three parts: the creation of an XML database containing the packet
descriptors (requiring the definition of an XML Schema); the development of an interface between
preexisting software modules and the new XML database; the implementation of a QuickLook
module which processes packet data converted into the XML-based FITSML format developed at
NASA/GSFC. The final result is a set of interacting software modules that implement a demonstrative
but fully operational prototype.

Keywords: Metadata, XML, DTD, XML-Schema, XSLT, XPath, XDF, FITS, FITSML, Scientific
Satellite Mission.

1 INTRODUCTION

Before the flight ready status can be achieved in scientific space missions, an extensive testing stage
is needed to evaluate the functioning of the payload (i.e. detectors or instruments placed on a satellite)
and also to investigate potential problems. The space mission for which the present work has been
developed is called AGILE (Astro–rivelatore Gamma a Immagini LEggero: Light Imaging Detector
for Gamma-Ray Astronomy; AGILE, n.d.). AGILE is an Italian Small Scientific Mission – currently
planned to be operational in 2005 – devoted to high-energy astrophysics (Tavani, Barbiellini, Argan,
Auricchio, Caraveo, Chen, et al., 2001): it will operate in the 30 MeV – 30 GeV range with imaging
capabilities also in the 10–40 KeV range. The AGILE mission is supported by the ASI (Italian Space
Agency) and scientifically developed in CNR (Italian National Research Council) and INFN (Italian
National Institute for Nuclear Physics) laboratories.

The functional tests and the scientific calibration for the AGILE instruments (Trifoglio, Gianotti,
Stephen, Celesti, Labanti & Traci, 2000) are carried out during the Assembly, Integration and Veri-
fication [AIV] stage by the workgroup at the IASF (the Space Astrophysics and Cosmic Physics
Institute of the CNR), Section of Bologna (IASF.BO, n.d.).

The final configuration planned in the AIV phase is shown in Figure 1. The block on the left
functionally corresponds to the payload, that is the four AGILE detectors, with their Data Handling
System. In particular, the AGILE payload includes Super-Agile, Silicon Tracker, MiniCalorimeter

 Data Science Journal, Volume 3, 3 November 2004 115

and Anticoincidence System detectors (Tavani et al., 2001; AGILE, n.d.). The payload is connected
to the Spacecraft Interface Simulator in the Electrical Ground Support Equipment [EGSE] block
through the same module that in the flight configuration will be the interface with the Ground
Segment systems. In fact, at the AIV level, all the issues related to the in-flight data flow handling are
ignored, and the data flows within the EGSE are instead simulated (with a TCP/IP channel, in the
case of AGILE). These include the telemetry data [TM], which are the scientific and housekeeping
data output from the satellite, and the telecommand data [TC], which are input to control the satellite.
All these streams are organized according to the ESA telemetry and telecommand packet speci-
fications (PTS, 1988; PTS, 1992). The Instrument Central Checkout [ICC] module has the task of
sending the TC data (generated with the support of a specific database) and of receiving the TM data.
The TC and TM data are then forwarded together, in order to preserve the mutual cause-effect

connection, to the block which follows: the Science Console [SC], which receives and stores all the
data exchanged both as raw data and in a suitable FITS format. FITS is the acronym of Flexible
Image Transport System, that is a file format typically used to store and exchange astronomical
data (FITS, n.d.). The ICC can also act as a monitor of all the service data by filtering the data
flow (with the support of another database), where service data consist of TC and housekeeping
[HK] packets. With respect to the space mission goals, HK packets have no scientific meaning:
they may contain only information related to the state of health of a certain instrument or of the
whole spacecraft. However, their scientific and engineering importance is crucial for the satellite
design and running activities. The monitoring module, that operates in near real-time, is called
QuickLook [QL]. In this framework, the term QuickLook is used to denote a monitoring action
involving the display of log data, which has been generated by a computation based on acquired data.
A QL module is intended to highlight particular features in a log section. Other specialized QL
modules are also usually present in the SC to process housekeeping and scientific data.

During the test stage, in order to tune all its components, every payload module must be considered
from different points of view: physical (e.g. mechanical, electrical, magnetic, thermal), functional, and
also performance-related. To this purpose, a specific Test Equipment [TE] has to be set up to simu-
late the operational environment of each module in isolation and evaluate its behaviour, possibly with
reference to a particular data flow. The layout of a generic TE (Figure 2) includes the tested module
and a block that manages the data flows (here called the Host Computer). The data flows are then

Figure 1. Assembly, Integration and Verification phase: the final testing configuration

 Data Science Journal, Volume 3, 3 November 2004 116

forwarded to an external host where all the data are collected and processed, which plays the role of
the SC here. The payload module, optionally solicited, is equipped with suitable front-end electronics
and placed in an environment which simulates its real working conditions.

In this context, our project is concerned with the introduction of XML-related technologies (XML,
n.d.) into the data management capabilities required of the SC, which is thus assumed to work with a
generic TE. The final aim is the implementation of a QuickLook module for housekeeping data
[HK-QL], which will specialize as a Limit Checking device that highlights out-of-range parameter
values. The introduction of XML-related technologies is motivated by the adoption of an established
standard for data processing and exchange on the Internet, which implies, for instance, the imme-
diate remote availability of housekeeping data and their utilization by means of state-of-the-art Web
browsers used as front-ends. This makes the sharing of scientific data between research groups easier
and improves collaborative work between the different design teams involved in the space mission
planning.

The rest of the paper is organized as follows. Section 2 contains an overview of the overall project
scheme which has guided our design work. Section 3 is devoted to the design of the XML database
for Packet Descriptors, whereas the design of the new output format required for the Packet Processor
is described in Section 4. The redesign of the Packet Processor module is the subject of Section 5,
while the implementation of the QuickLook module is described in Section 6. Conclusions can finally
be found in Section 7.

2 THE OVERALL PROJECT SCHEME

In order to complete the design of the HK-QL module, several sub-modules deploying different
technologies have to be set up at different stages of the packet management process. Moreover, also
in order to reduce the design effort, one of the project specifications was the reuse of software
modules (C++ libraries) developed in the context of previous space missions. As a result, the AGILE
GSE Team at the IASF Section in Bologna has developed the final design scheme shown in Figure 3.

The shadowed box schematically represents all the preexisting modules: among these, the only one
that needs amendments (viz. the addition of C++ classes corresponding to the new XML features) is
the processor. All around the shadowed box, the Figure shows the new modules that have had to
be specifically developed for this project. Notice that the grayed out ones are just anticipated pos-
sible add-ons.

Figure 2. The layout of a generic Test Equipment

 Data Science Journal, Volume 3, 3 November 2004 117

The first component that we consider is the “Packet Descriptors database”, which is an XML data-
base that must contain the description of the structure (down to the bit level) of all the data packets
that the system must be able to deal with. The component is shown as HK DB in the Figure, since the
only type of packets we consider in this phase is HK data.

Obviously, the correct processing of a packet relies on the presence in the database of a corre-
sponding consistent description and of some additional information which is needed for the control of
the data carried. Moreover, the design of the HK DB must be flexible enough to allow for different
kinds of packets, also taking into account, for compatibility reasons, the generic packet layouts
expected by the existing C++ libraries. After the schema design and implementation, the HK DB
must be manually loaded with actual packet description data. To this end, a simple commercial XML
editor has so far been used, but we are also considering the development of a suitable input module,
customized for the special XML documents used, in the future.

The task of the second component we consider is the initialization of the acquisition system, which is
done on the basis of the HK DB data. The initialization uses several configuration files (a pair of
.packet and .stream files for each packet processor instance), which are generated by an initiali-
zation routine after querying the XML database to extract the required information. The initialization
process could also be limited to a subset of all the available packets, relevant for the testing, which is
selected by a human user from a list compiled via a preliminary HK database scan.

Thirdly, the processor module must be upgraded in order to produce output HK data formatted as
suitable XML documents, containing all the information that was previously represented in the FITS
files. Issues related to the recalibration of data (which is a form of data transformation, usually of
the linear sort but occasionally of the non linear sort, used to decode telemetry data encoded before

Figure 3. The project scheme (with the preexisting modules shown in the shadowed box)

 Data Science Journal, Volume 3, 3 November 2004 118

satellite transmission) or advanced QL monitoring features (e.g. delta checking or status checking ac-
tivities) have not been considered at this stage of the design. In fact, at a test stage, the limit checking
action that the QL engine is required to perform can be done independently from recalibration, which
can thus be dealt with in a future design phase.

The final task concerns the development of the QuickLook component. The QL module, which must
monitor the HK data stream nearly in real-time, can be implemented by means of a standard Web
browser, owing to a simple XML to HTML transformation. For the display of the HK parameters, a
simple tabular layout has been judged sufficient to properly highlight out-of-range values, although a
more sophisticated user interface could be adopted in the future. With this solution, the QL engine
can easily be exported from a local host (the SC) to a remote and generic one. In this way, advanced
querying and/or browsing facilities, including the possibility of selecting a particular subset of
parameters and/or a specific temporal range, could also easily be integrated into a full-fledged QL or
Logbook module. The Logbook module, which has not been implemented yet, will make it possible
to analyze archived QL data, both in the off-line and the on-line mode, locally as well as remotely.

Although the adopted solution is currently aimed at monitoring HK data only, the developed infra-
structure could easily be adapted in a future stage to process scientific data as well. Obviously, in
such a case the importance of the developed infrastructure goes beyond the boundaries of the AGILE
project, since the possibility of remotely accessing the data on the Web would be of great value to the
whole scientific community.

3 THE PACKET DESCRIPTORS DATABASE

The packet descriptors database (hereinafter called HK DB) is, from a certain point of view, the core
of the whole project. The initialization of a generic packet processor needs configuration files built
based on the data stored in the HK DB. Once started, each specific processor built with reference to a
particular TE must directly retrieve from the HK DB some support data which are used, along with
the HK data, to feed the QL module. Finally, the QL engine must be aware of the HK DB contents to
properly implement the required limit-checking feature.

The HK DB must provide an XML description of the structure of all the HK packets that the system
is able to handle, in addition to information about the parameters that each of the packets may con-
tain. Therefore, we have designed a specific XML document structure which is as flexible and
reusable as possible, which can be easily shared by different modules, and which also allows users to
input the (sometimes repetitive) description data in a quick and user friendly way.

The baseline adopted for the HK descriptive record corresponds to the (generic enough) set of fields
provided for by the housekeeping documentation (IBIS.HK, n.d.) concerning the IBIS (Imager on
Board of the INTEGRAL Satellite) instrument, developed for the INTEGRAL (INTErnational
Gamma-Ray Astrophysics Laboratory) ESA mission with the long-term involvement of the IASF
Section of Bologna. A sketch of this field sequence is shown in Figure 4, with a brief explanation of
each item.

In order to define the structure of the required XML documents, we first considered the adoption of a
DTD (Document Type Definition), according to the specification included in the current XML W3C
Recommendation (v1.0, 2nd Edition). However, the DTD syntax (see "2.8 Prolog and Document
Type Declaration" in Bray, Paoli, Sperberg-McQueen & Maler, 2000) is too poor from a semantic
viewpoint and barely allows us to build a grammar that is a simple translation of the structure shown
in Figure 4. Moreover, very few data types are supported in a DTD and these are too generic with
respect to our application needs.

An initial extension of the DTD mechanism, which provides for a datatype declaration mechanism, is
given by the DT4DTD (Datatypes for DTDs) specification (Buck, Goldfarb & Prescod, 2000). How-
ever, the DT4DTD approach is rather complicated, and must be seen mainly as a temporary solution

 Data Science Journal, Volume 3, 3 November 2004 119

for extending already developed DTDs with datatypes, without requiring a great rewriting and re-
structuring effort.

Figure 4. The parameterRecord datatype. A “nillable” element indicates an item which can
have a null value, regardless of its type.

 Data Science Journal, Volume 3, 3 November 2004 120

Looking for a more powerful way to describe the required data structures, we then considered two
other alternatives: the XML-Data Reduced [XDR] language, and the XML-Schema Definition [XSD]
language. The XDR language, which is essentially a subset of the ideas described in the former
XML-Data specification (Layman, Jung, Maler, Thompson, Paoli, Tigue, et al., 1998), is not a W3C
Recommendation but a proprietary standard proposal submitted to the W3C Consortium and
promoted by Microsoft (XDR-doc, n.d.). In contrast, the XSD language is an established standard,
endorsed by W3C since 1999, which has been designed to take into account XDR and other pro-
posals. XSD supports, with an XML-like syntax, strong data typing when defining expressive and
flexible XML document structures.

Hence, we decided to follow the XSD approach, according to the currently available final Recom-
mendation dated May 2nd, 2001 (Fallside, 2001; Thompson, Beech, Maloney & Mendelsohn, 2001;
Biron & Malhotra, 2001). Therefore, in our XML-Schema definition, we were actually able to
profitably use several peculiarities of the XSD approach such as, for example, the possibility of
specifying identity-constraints and defining structured datatypes inclusive of alternative elements.

An “identity-constraint” introduces into the definition of an XML-Schema (thanks to the use of
XPath expressions; see section 3.11.1 in Thompson et al., 2001) a semantic tool which we have found
useful because it enables a unique name to identify each packet description in the database at vali-
dation time. In this way, the selection of data related to each particular operating context becomes
unambiguous, and the data retrieval process is made easier.

Furthermore, the uniqueness constraint already supported by XML through the ID and IDREF attribute
types (see sec. 3.3.1 in Bray et al., 2000), included in the XML-Schema among the “derived
datatypes” (see sec. 3.3.8 and 3.3.9 in Biron & Malhotra, 2001), allowed us to introduce a cross-
referencing mechanism which we exploited, for instance, to avoid repetition when inputting
descriptive data in the HK DB. Hence, in order to exclude wrong links between uncorrelated fields,
the values of these attributes have been constrained to be not only unique but also to conform to a
suitable specific “pattern”, thus taking advantage of another XML-Schema peculiarity. Moreover, for
a correct implementation, the cross-referencing mechanism must:
• not be available for elements with a null content;
• not interfere with the “nillability” concept;
• inhibit any explicit content definition, when a reference is used;
• ensure that the pointed element has a non-null content (unless exceptions are explicitly intro-

duced, for specific cases).

In order to meet these requirements for all the elements for which the cross-referencing attributes
were needed, we introduced a structured datatype that provides for alternative elements and thus
makes it possible to define a database record with interchangeable fields. In particular, we decided to
use the “element substitution groups” supported by XML-Schema, representing a structure that
supports substitution of one named element for another, which is more powerful than a simple
“choice” structure (see "2.2.2.2 Element Substitution Group" in Thompson et al., 2001). Figure 5
illustrates a pair of such structures, showing the relevant attributes.

Finally, after implementation we thoroughly tested the defined XML-Schema and, in particular, the
cross-referencing mechanism, by storing the experimental HK packets specifications related to the
TEs developed for the MiniCalorimeter Detector Front-End (MCAL-DFE) and the Super-AGILE
Front-End Electronics (SA-FEE) in the HK DB.

3.1 The Packet Processor initialization routine

The software development group involved in this project has so far developed and used (for pre-
vious space missions, but also for the preliminary TEs of AGILE) packet processors based on a
library of C++ classes written for Linux/Unix platforms. This solution requires two configuration
files for each packet processor instance: the .packet and .stream files, which must strictly con-
form to a specific syntax corresponding to the C++ classes defined in the software library. In our new

 Data Science Journal, Volume 3, 3 November 2004 121

architecture, the initialization routine that generates the configuration files is quite a simple C pro-
gram, called INIT routine in Figure 3. The initialization routine first retrieves the necessary infor-
mation by querying the HK DB XML database, and then formats the retrieved data according to the
required syntax before writing the configuration files.

Among the available XML querying technologies, we decided to use XSLT (Extensible Stylesheet
Language Transformations) and XPath (XML Path Language) as query languages, in their 1.0
version published as a W3C Recommendation on November 16, 1999 (Clark & De Rose, 1999;
Clark, 1999). Other options, like XSLT and XPath version 2.0 or XQuery (XML Query Language)
v1.0, were discarded since though more “advanced” such languages are still (as of now, their last
specifications are dated November 12th, 2003) at the Working Draft level and, thus, not stable
enough. On the other hand, the consolidated XSLT v1.0 appeared to be sufficient for our needs.

The stylesheet we have thus developed is quite simple: it is basically made up of two nested loops
(embodied in the two <xsl:for-each> XSLT elements), where the outer loop scans packet-related
nodes of the XML document tree, and the inner loop scans parameter-related nodes (corresponding to
the parameterRecord-type element of Figure 4). We only had to pay attention to the required
ordering of output data, which must reflect the physical order of the parameters in the packet. An
<xsl:sort> element (producing a primary and secondary order on the BYTE and SBYTE fields,
respectively) has been added to the inner loop for this purpose. Finally, an <xsl:choose> element

Figure 5. Two sample “substitution groups” (with the relevant cross-referencing attributes)

 Data Science Journal, Volume 3, 3 November 2004 122

has also been added to the outer loop to adapt the structure of the output configuration file to the
classification of the processed packet layout, owing to some extra information available in the HK
DB for each packet (at the same level as the parameters sequence).

In order to execute the XSL transformation, the INIT routine simply makes use of the Xalan
executable taken from the Xalan/Xerces environment (Xalan-Xerces, n.d.). In particular, Xalan is an
open-source high-performance XSL stylesheet processor, representing a really robust implementation
of the W3C XSLT and XPath recommendations, supported by the “Apache XML Project”. At the
same time, the Xalan execution can also be used to make a validation check of the whole HK DB,
which is particularly useful for implicitly testing the consistency of the internally used cross-refer-
ence mechanism. The transformation is carried out only once on the whole database, in order to avoid
the overhead due to repeated processing of a rather large XML file. In such a way, the contents of all
the required .packet files (one for each packet descriptor in the DB) are sequentially generated and
appended to a single output file. Afterwards, individual .packet files can easily be extracted, using
suitable delimiters inserted in the output file by the stylesheet.

The stylesheet also introduces many other extra lines (containing information taken, directly or in-
directly, from the HK DB), which subsequently act as verification data: for example, during the XSL
output file post-processing, a check on the completeness of the packet-descriptive data is actually
carried out. If this check is successful, the current .packet file is generated, together with a pro-
visional minimal .stream file, with the same name. Otherwise, the .packet file generation is
aborted and the INIT routine ends with a message indicating the name of the corrupted packet
description and the offset of the missing data. The checks performed by the INIT routine are not
particularly sophisticated but they have been shown to be adequate to correctly detect all the error
situations which may occur in this phase.

4 THE PACKET PROCESSOR OUTPUT FORMAT

The output data produced by the generic processor must also be in XML format. The question is
which particular XML document structure should be used: a new one, created specially like the one
used for the HK DB; or rather an already available one (with the necessary adjustments), that can be
searched and taken somewhere else.

The experience gained in dealing with the packet descriptors showed that developing an XSD schema
according to pre-defined format specifications could be a very time-consuming task. Moreover, the
results may suffer from a lack of generality which eventually leads to difficulty of reuse. Therefore, it
seemed advisable to choose the latter option, although even that choice is not risk-free. Basically, the
main difficulty lies in finding an XML document structure that is really suitable for the application's
purpose, that is able to adequately represent all (or nearly all) the information which was formerly
kept in a FITS file.

As a preliminary candidate solution, our choice fell on XDF (eXtensible Data Format for scientific
data – Shaya, Thomas & Cheung, 2001), which is a language designed by the XML Group of the
NASA Goddard Space Flight Center [GSFC]. XDF is a mark-up language conceived as a reference
standard for the representation of scientific data, which could allow an unrestrained exchange of
information from one scientific field to any other. The XDF definition may then be “extended” and
adapted for a specific context, in order to better fulfil the specific data representation and processing
needs of a particular scientific field. However, XDF does not meet all the requirements of the
ongoing project, mainly because it does not adequately support the representation of metadata, which
are typically added to data files (e.g. as special headers in FITS files), and are strictly dependent on
the application field as to form and content.

Actually, an XDF-based proposal for the representation of astronomic data already exists: the
FITSML (FITS Mark-up Language – Thomas, Shaya & Cheung, 2001) language, which has been
defined by the same group that developed XDF. FITSML is simply an XML version of the FITS

 Data Science Journal, Volume 3, 3 November 2004 123

standard. It is not aimed at redefining the original specifications, but rather at remapping the FITS
format onto the XML syntax, thanks to the inclusion of an XDF schema. The rationale of such a
design choice is to avoid confusing the users, who for more than twenty years have been accustomed
to the FITS format, and therefore favor migration to FITSML, as a potential new standard. The notes
and definition files regarding the FITSML language can be found on the XDF home page (XDF,
n.d.), in the section entitled "Markup Languages that Inherit from XDF". Hence, since FITSML can
cover all our design requirements including the representation of metadata, our final choice fell on
FITSML.

The version of FITSML we adopted is that labeled "v0.04", which is still under development. During
our work, we have indeed found several inconsistencies between the proposed DTD and XSD cor-
related schemas. Moreover, the latter one, which was just introduced as a “Proposed Recommen-
dation”, was also discovered to be not fully compliant with the current XML-Schema specifications.
Anyway, thanks to the cooperation of Edward J. Shaya of the GSFC XML Group who took into
account our comments, a stable and consistent XML-Schema for the FITSML v0.04 has been
released, along with a revised version 0.17 of the correlated XDF schema. The specification
documents published by the GSFC XML Group on its web repository have also been accordingly
updated and are now publicly available. The repository contains schemes, samples, and also some
documentation, related to several languages that the GSFC XML Group has developed in the last few
years (GSFC.XML, n.d.).

4.1 Mapping of the FITS format for use within the AGILE mission

Having settled the basic XML document structure needed to archive the data produced by the packet
processors, we had to define a suitable mapping for the special extension of the FITS format which is
used within the AGILE mission.

In general, a FITS file is made up of one or more Header and Data Units [HDUs], that is units made
up of a descriptive text header optionally followed by a data block. Actually, only the first HDU –
called Primary Array – is mandatory and its Data Unit, if present, complies with a given layout
corresponding to an N-dimensional array of pixels, named IMAGE array. All the subsequent (optional)
HDUs – called extensions – may include data blocks of several types, which are generally of three
standard types: IMAGE, ASCII TABLE, and BINARY TABLE.

In practice, the Primary Array usually contains no data as it only serves as a global file header, while
all the data are put in the subsequent extensions with the most suitable type (e.g. BINARY TABLE for
HK data). Therefore, a FITS file can be schematized, for our purposes, with a sequence of three parts,
as shown in Figure 6. The first two parts are headers, structured as sequences of fixed-length (80-
byte) lines – called Card Images – containing information organized as < keyword, value, optional
comment > tuples, whereas the third part is a stream of data in binary format. The former header (viz.
Primary Array) contains general information whereas the latter, in particular, contains all the infor-
mation which is necessary to reconstruct a logical tabular organization of the data contained in the
third part, where each table column corresponds to a parameter, and each line represents a telemetry
packet prefixed with a timestamp.

Although XDF supports the notion of binary data, which must be interpreted by a suitable reader (cf.
the binaryFile Notation discussed in the “white paper on XDF”; “General XDF Documentation
and Samples” in XDF, n.d.), we preferred to have raw data converted into a textual form (CDATA
type) in order to be processed by an ordinary XSL stylesheet.

In this phase, we tested the translation process with some sample FITS files previously generated by
an already developed packet processor, related to the Test Equipment for the AGILE's MCAL-DFE.
An in-depth description of the MCAL instrument, and a discussion of several tests carried out on
prototypes, can be found in Auricchio, Celesti, Di Cocco, Galli, Gianotti, Malaspina, et al. (2002). In
the translation of the headers, all those FITS keywords that were judged redundant or useless for the
new format, according to the notes at the end of the FITSML v0.04 XSD document (FITS, n.d.), were

 Data Science Journal, Volume 3, 3 November 2004 124

rejected. Then, all the filtered information was marked up with XML tags in conformity with the
FITSML format.

In general, the resulting FITS-FITSML mapping was non univocal, and was heavily influenced by
the XDF structure that was chosen to represent the real data. We have also taken into account how the
chosen solution could facilitate the QuickLook module that must subsequently process the resulting
XML document. For instance, the way that the information extracted from the packet descriptors
database is attached to the real processor output data, and their XML encoding, may influence the
complexity of the XSLT code and of the XPath expressions needed to detect out-of-range values.

In particular, the selected organization complies with the suggestions given by the authors of
FITSML, and aims to fully exploit the potential of XDF. In practice, the whole data set contained
in the source FITS file is also organized in matrix form in the target FITSML document, inside a
single <array> element. The <array> element includes a <fieldAxis> sub-element, which con-
tains all the data-descriptive information (with a <field> element for each of the parameters), and a
<data> subelement containing the actual data. Data rows, corresponding to packets, are delimited by
<d0> … </d0> tags, whereas data items within rows, corresponding to parameter values, are delim-
ited by <d1> … </d1> tags within a <d0> element. The exact correspondence between the FITS
table data and the contents of the FITSML <data> structure is encoded by the “read/tagToAxis”

Figure 6. Sample FITS header (for the AGILE mission)

 Data Science Journal, Volume 3, 3 November 2004 125

structure's contents (Shaya et al., 2001) in a rather complex way. For the sake of simplicity, we omit
the technical details here.

As far as other information contained in the FITS headers is concerned, it is encoded by means of
pre-defined tags with the same name as the keyword (if present in the FITSML definition) or by
means of generic <note> elements having the original keyword as the value of the mark attribute. In
this way, for instance, the value associated with the ORIGIN keyword can be referenced in XPath as
“note[@mark='ORIGIN']” that denotes the value delimited by <note mark='ORIGIN'> …
</note> tags in an XML document. Furthermore, we have to distinguish between the information
concerning individual packets and the one that is a global constant for the instrument or for the whole
mission. Hence, the corresponding <note> element is inserted, for the former, in the <notes> sub-
element of the <array> element, or, for the latter, directly in the root element <FITSML> of the
whole document.

The resulting FITS to FITSML mapping is summarized in Figure 7. A preliminary test of the map-
ping was eventually carried out by manually deriving FITSML documents from some sample FITS
files and then checking their validation successfully. Once the data output specifications had been
established, we started the development of the planned demo processor, which must implement the

Figure 7. The FITS to FITSML mapping adopted in the AGILE context

 Data Science Journal, Volume 3, 3 November 2004 126

XML database query facilities and also support the XML format for the data output. The develop-
ment required a partial redesigning of the code of a pre-existing packet processor, based on the Packet-
Lib and ProcessorLib libraries.

5 THE PACKET PROCESSOR MODULE

In this section, we describe the amendments effected on the Packet Processor module source code in
order to support the XML format.

5.1 PacketLib and ProcessorLib: a quick overview

The PacketLib (Bulgarelli, Gianotti & Trifoglio, 2003a) is a C++ open-source middleware library
developed for Linux/Unix platforms with the aim of providing a common reference for applications
that have to manage telemetry source packets that are compliant with the ESA Telemetry and
Telecommand Standards. Its main purpose is to allow a strategic software reuse and, consequently, a
faster development of TEs and EGSE applications based on an object-oriented paradigm.

The classes of this library give the programmer an abstract representation of the packets, which are
further classified, in the current release, into three different typologies. Owing to this abstraction, the
upper layer (see Figure 8) can then ignore the byte stream issues and provide the high-level telemetry
management functions required by the application layer.

The ProcessorLib (Bulgarelli, Gianotti & Trifoglio, 2003b) is the first example of an application
based on the framework given by the PacketLib. It contemplates as input three packet sources,
file, socket, and shared memory (see the outline in Figure 3), that are then considered as data
providers in the subsequent packet processing stage. Shared memory is the mechanism used by
another preexisting module, called DISCoS (see Gianotti & Trifoglio, 2001), to externally pro-
vide the data. The selection of the input packet stream used for each specific processor is made on
the basis of an associated configuration file (i.e. the .processor file). The functional organization
of the ProcessorLib package is illustrated in Figure 9. The classes defined in the ProcessorLib
implement both the general purpose functions shared by all the processors (part A in the diagram in
Figure 9) and all the elements needed to customize them (part B), according to the particular
instrument and data flow to be processed.

I/O abstraction

Telemetry management
PacketLib

Application

Operating system

Figure 8. Abstraction layers provided by the PacketLib C++ library

 Data Science Journal, Volume 3, 3 November 2004 127

5.2 Upgrading the Packet Processor module

The ProcessorLib was not designed to manage input or output data in XML format. Therefore, in our
project, the ProcessorLib package had to be upgraded with the addition of new classes devoted to
XML data management, in order to extract data from an external XML database and to produce
output data in FITSML format.

The ProcessorLib upgrade was carried out starting with the particular case of HKCALDFETE, that is
the TE related to the HK data flow coming from the above-mentioned MCAL-DFE. In particular,
such an upgrade involved the revision of two classes making up the beta version of the previous test
processor. These classes are the HKCALDFETEProcessor class – which originates from the Proc-
essor class (see Figure 10) defined in the ProcessorLib (Bulgarelli et al., 2003b) – and the
HKCALDFETE_FITS class. Although the latter has been renamed HKCALDFETE_FITSML, it re-
mains an extension of the abstract class FITSBinaryTable, which is actually generic and not
conditioned by the adoption of the FITS format.

In order to speed up the upgrade process, we decided to simply add the new functions rather than
totally revise the processor software design. Nevertheless, some improvements at the source code
level have been introduced as well. First of all, the MCAL_HK_PACKET structure, representing the HK
packet considered, has been simplified in order to make the packet data acquisition and the output
generation processes (implemented by the setValue() and writeData() methods) more efficient.
Then, the arrays used to implement the communication channel between the two classes were totally
redesigned, in order to include in the generated XML output all the packet field names retrieved
from the .packet configuration file, which can easily be accessed through suitable methods and
properties of the PacketLib classes. Incidentally, the software fault-tolerance was also improved
by means of more extensive exception handling, which also covers all the new FITSML output
generation features.

The FITSML-related methods (easily recognizable by the prefix in Figure 10) have been built in
order to encapsulate only atomic events, so that they could easily be identified and used (and also, in
the future, reused). In order to execute the XML queries needed to retrieve support data from the HK
DB, we decided to use two open-source C++ APIs: Xalan-C++ (version 1.4.0) and Xerces-C++
(version 2.1.0), from the already mentioned Xalan/Xerces platform (Xalan-Xerces, n.d.). These
libraries currently seem the best solution – at least on a Linux machine – for parsing, validating and
transforming XML documents.

Figure 9. The functional scheme of ProcessorLib

 Data Science Journal, Volume 3, 3 November 2004 128

The methods that we implemented using the Xalan/Xerces APIs are the last two listed in Figure 10.
They both provide (as character strings) the desired data, given a database name, an XPath
expression, and a context in which to evaluate it. The second method allows up to four queries to be
issued at the same time on the same context, in order to obtain – with a negligible programming

Figure 10. The HKCALDFETE classes

 Data Science Journal, Volume 3, 3 November 2004 129

overhead (i.e. replication of source code lines) – an important performance improvement. Actually,
verification of the context consistency is a time-consuming activity, whose execution time increases
rapidly with the database size. Since the packet descriptors database easily grows very quickly, this
can become a problem. Further optimization, working in a more general case, could most likely be
obtained by executing the required parsing only once per XML document (generating an appropriate
XalanParsedSource object) and then using its binary representation for further processing.

As to the inherited methods (i.e. init(), writeData(), and close() in Figure 10), they had to be
completely redesigned. The init() method, formerly devoted to producing the Primary Header and
the Binary Table Header of the FITS file (see Figure 6), is now used to generate the first portion of
the new .xml file, containing the common XML header processing instructions, the root tag and,
inside the <array> container, the <fieldAxis> with the related <read> elements. In order to
compile the table of the parameter-descriptive data within the <fieldAxis> element, repeated calls
to one of the above-mentioned methods using the Xalan/Xerces APIs are used. Each call requires the
construction of a suitable context string, where special care is needed for the specification of correct
namespace prefixes. The writeData() method feeds, as before, the real data, including the asso-
ciated timestamps, into the output file. However, its new code is more compact, thanks to only a
single loop being needed to scan the simplified packet representation used. The close() method, fi-
nally, has become much more significant than before, also because of the changes (requiring header
fields at the end of the FITSML files) introduced by the GSFC XML Group in the FITSML format
due to the adoption of the XML-Schema in place of the DTD previously used.

6 THE QUICKLOOK MODULE

The HK-QL module, specialized as a Limit Checking device, has simply been implemented by means
of an XSLT stylesheet (Clark, 1999) that effects an XML to HTML transformation. The XSLT trans-
formation produces a tabular output of the HK data, which highlights the out-of-range parameter
values by means of different colours.

We briefly outline here the design of XPath expressions (Clark & De Rose, 1999) which have been
used to connect the parameter values with their admissible bounds during the stylesheet application.
The implemented solution relies on the fact that the order imposed on the configuration data ap-
pended to the .packet file by the initialization routine is the same as that for the parameters proc-
essed by the Packet Processor module. As a consequence, within FITSML files, the limit values of
the different parameters are stored in the same order as their data in each of the packets, regardless of
their actual physical order in the HK DB.

Hence, the XPath expression needed to establish the connection between the data and the corre-
sponding boundaries can safely rely on the one-to-one correspondence between the position of the
description of each parameter (<field> element) within the <fieldAxis> element and the position
of its values (<d1> element) within all the <d0> elements. For instance, when processing the i-th
value in a given row, the alarm and the warning values to which the stylesheet must refer can be
found in the <note> subelements of the i-th <field> element. The positional correspondence is
managed by means of the XPath position() function, which returns the ordinal number of the
current XML node in the list of children of the parent node. Therefore, the data table is processed
by means of two XSLT loops, nested as follows:

 <xsl:for-each select="xdf:FITSML/xdf:array/xdf:data/xdf:d0">
 <!-- lines (packets) scan -->
 <xsl:for-each select="xdf:d1">
 <!-- columns (parameter values) scan -->
 ...
 </xsl:for-each>
 </xsl:for-each>

 Data Science Journal, Volume 3, 3 November 2004 130

Within the inner loop, the ordinal of the current <d1> element is saved in an XSLT variable p as
follows:
 <xsl:variable name="p" select="position()"/> ,

such that it can be used in XPath expressions to select limit values, as in the following example con-
cerning the ALARM_LOW boundary:
 <xsl:when test=". < ../../../xdf:fieldAxis/xdf:field[$p]/xdf:note[@mark='alarmLow']">

The whole XSLT stylesheet that generates the HTML code for the QuickLook chart basically carries
out three different scan loops. The first loop is executed on all the <field> elements (except the
first, that corresponds to the timestamp), in order to generate four preliminary lines indicating the
maximum and minimum values of warning and alarm limits for each parameter; the second loop
scans the fields in the <fieldAxis> element once more to identify the parameter-descriptive labels
to be used as column headers; the third loop scans the data and sets their color in the HTML repre-
sentation according to the result of the tests effected on the corresponding limit values by means of
XPath expressions as described above.

A sample output, involving only three parameters, F_01, F_02 and F_03, as rendered by a Web
browser, is displayed in Figure 11. During the loop which generates the headers, a test on the consis-
tency of the limit values themselves (alarmLow, warningLow, warningHigh, alarmHigh) is also
carried out, and produces, whenever an error is detected, a header with a different, strikingly colored
background (e.g. see the parameter F_03 in Figure 11, having warningLow = warningHigh). In
this way, the QuickLook user will at least realize that the alarm/warning signals he/she reads for a
given parameter are not really meaningful. Actually, a strict consistency check is made only between
the two warning limits, to ensure that the range of admissible values is not null. The alarm interval
must contain (or coincide with) the warning interval.

In order to make the timestamp information in the first table column useful at the QL stage, a final
minor change has been introduced in the final release of the QL stylesheet (which also required a mi-
nor revision of the FITSML format specification for the processor output files). The change was
necessary in order to have timestamps in a human-readable format in the QuickLook chart. As a
matter of fact, the numeric timestamp inherited from the FITS files is expressed as a count of
seconds starting from a time chosen as zero, whereas XSLT, in its current version, does not supply
functions capable of interpreting and/or translating a timestamp in such a format. XPath Extension
Functions for the management of time and date expressions exist, but would require data to be in
the alphanumeric format provided in the XML-Schema specification (Biron & Malhotra, 2001).
Hence, we included timestamp conversion in the functionalities of the packet processor (by simply

Figure 11. A QuickLook sample output

 Data Science Journal, Volume 3, 3 November 2004 131

using the C language conversion functions available in the ctime library), so that also human-
readable timestamps are included in the FITSML file generated by the processor. Such an addition
required a minor revision of the FITSML file format to make room for the alphanumeric timestamps
and an upgrade of the QL stylesheet for the correct management of such timestamp values.

7 CONCLUSIONS

In this work, we described the introduction of XML-related technologies into the development of
Test Equipments for the AGILE scientific satellite mission. In particular, such technologies were
employed for the representation and management of telemetry packets involving, in this phase,
housekeeping data. For this purpose, packet descriptors and packet data XML databases were de-
signed and implemented, and software modules were developed for the management of the XML
databases, for interfacing with preexisting packages and for the release of a QuickLook module
which uses a standard Web browser as (remote) front-end.

After implementation, extensive testing was performed to verify that each developed module func-
tioned properly and, finally, the correct operation of the whole prototype. All the exploited XML
technologies have confirmed their effectiveness: the XML-Schema grammar, used to define the new
“centralized” packet descriptors database (also exploiting XDF and FITSML); the XPath queries,
used to extract the required information from the descriptors database; the XSLT stylesheets, used to
implement the INIT routine as well as the QuickLook module. The XDF and FITSML languages – in
their revised versions – have been proven to meet all the project specifications. Also the interface
between the Xalan/Xerces APIs and the already developed C++ libraries has not shown any particular
problems, even if several of the features provided by that platform are still to be further investigated.

A print-out of the console output, taken from one of the final test sessions based on a socket input
stream (synthetic data), is shown in Figure 12. The messages in lines 14-18 show a call to another
(experimental) method we built, named transformViaXSLT(), which makes use via the Xalan
platform of an XSLT stylesheet to transform the processor output into an HTML document. In this
way, the QuickLook function can be realized already within the processor module. The same method
could also be used to validate the XML output; however, such a feature was only used during pre-

Figure 12. Console output from a test session

 Data Science Journal, Volume 3, 3 November 2004 132

liminary tests and then disabled in order to avoid a significant and unnecessary overhead. The
FITSML output was externally tested and proved to be well-formed and valid by means of several
(also commercial) tools. FITSML output files have also been sent to an XML-aware Web browser
(i.e. Mozilla) in order to be processed on-the-fly with the QL stylesheet, and in an on-demand fash-
ion, that is only when a display of the QL data is actually requested. In fact, such an approach allows
an even more complex stylesheet to be used, in order to let the QL user interactively select, on the
client-side, the columns and/or the range of rows to be viewed. A final design choice on how and
when to perform the XML to HTML transformation needed to achieve the QL function will be made
at a later stage of the overall project, and will also take into account the overall performance of the
whole system.

As far as performance is concerned, there are indeed several issues to be considered, including the
waste of storage space caused by the XML format and the time-consuming XPath/XSLT processing.
To solve the first problem, solutions based on XML-specific compression methods could be used, for
example, by integrating already available tools at parser level. Compression leads to obvious benefits
for network transfer, and storage of large files. Moreover, available query processing techniques (e.g.
Arion, Bonifati, Costa, D'Aguanno, Manolescu & Pugliese, 2003; Buneman, Grohe & Koch, 2003)
that work directly on compressed (or partially decompressed) XML files could also be used to im-
prove the efficiency of their management. To address the second problem, an emerging class of
hardware devices, generically named XML accelerators (Salamone, 2002), could be used to relieve,
in practice, the application/database server from the XSLT processing, with a significant improve-
ment in the conversion time. Future work will also consider options involving the introduction of
such technologies.

In any case, we think that the chance to manage telemetry packet data flows (along with the metadata
involved in their management) using XML-related technologies is worth further investigation and
evaluation, and could also bring substantial advantages to scientific space missions in the long run.
Long-term objectives also include the extension of the approach to the management of scientific data,
for which the advantages would have an even greater impact (e.g. as to availability and dissemi-
nation).

8 REFERENCES

AGILE (n.d.) Homepage of the AGILE Mission. Retrieved January 1, 2004 from the IASF CNR Web
site: http://agile.mi.iasf.cnr.it/

Arion, A., Bonifati, A., Costa, G., D'Aguanno, S., Manolescu, I., & Pugliese, A. (2003) XQueC:
Pushing Queries to Compressed XML Data. VLDB Proceedings (Demo session) (pp. 1065-1068),
Berlin, Germany.

Auricchio, N., Celesti, E., Di Cocco, G., Galli, M., Gianotti, F., Malaspina, M., Labanti, C., Mauri,
A., Rossi, E., Stephen, J.B., Traci, A., & Trifoglio, M. (2002) MiniCalorimeter of the AGILE
satellite, SPIE Proceedings 4497 (pp. 187-198), San Diego, California.

Biron, P.V., & Malhotra, A., (Eds.) (2001) XML Schema Part 2: Datatypes, W3C Recommendation,
02-05-2001. Retrieved January 1, 2004 from the W3C Web site: http://www.w3.org/TR/xmlschema-2/

Bray, T., Paoli, J., Sperberg-McQueen, C.M., & Maler, E., (Eds.) (2000) Extensible Markup
Language (XML) 1.0 (Second Edition), W3C Recommendation, 06-10-2000. Retrieved January 1,
2004 from the W3C Web site: http://www.w3.org/TR/REC-xml

Buck, L., Goldfarb, C.F., & Prescod, P., (Eds.) (2000) Datatypes for DTDs 1.0, W3C Note, 13-01-
2000. Retrieved January 1, 2004 from the W3C Web site: http://www.w3.org/TR/dt4dtd

Bulgarelli, A., Gianotti, F., & Trifoglio, M. (2003a) PacketLib: a C++ library for scientific satellite
telemetry applications, ADASS XII Proceedings (pp. 473-476), ASP Conference Series 295,
Baltimore, Maryland.

http://agile.mi.iasf.cnr.it/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/dt4dtd

 Data Science Journal, Volume 3, 3 November 2004 133

Bulgarelli, A., Gianotti, F., & Trifoglio, M. (2003b) ProcessorLib Programmers Guide. Retrieved
January 1, 2004 from the IASF CNR Web site: http://www.bo.iasf.cnr.it/~GSE/ProcessorLib/

Buneman, P., Grohe, M., & Koch, C. (2003) Path Queries on Compressed XML. VLDB Proceedings
(pp. 141-152), Berlin, Germany.

Clark, J., & De Rose, S., (Eds.) (1999) XML Path Language (XPath) Version 1.0, W3C Recommen-
dation, 16-11-1999. Retrieved January 1, 2004 from the W3C Web site: http://www.w3.org/TR/xpath

Clark, J., (Ed.) (1999) XSL Transformations (XSLT) Version 1.0, W3C Recommendation, 16-11-1999.
Retrieved January 1, 2004 from the W3C Web site: http://www.w3.org/TR/xslt

Fallside, D.C., (Ed.) (2001) XML Schema Part 0: Primer, W3C Recommendation, 02-05-2001.
Retrieved January 1, 2004 from the W3C Web site: http://www.w3.org/TR/xmlschema-0/

Gianotti, F., & Trifoglio, M. (2001) DISCoS - a detector independent software for the on-ground
testing and calibration of scientific payload using the ESA Packet Telemetry and Telecommand
Standards, ADASS X Proceedings (pp. 245-248), ASP Conference Series 238, Boston, Massachusetts.

FITS (n.d.) The FITS Support Office Page at NASA/GSFC. Retrieved January 1, 2004 from NASA,
Goddard Space Flight Center Web site: http://fits.gsfc.nasa.gov/

GSFC.XML (n.d.) The XML Group Resources Page at NASA/GSFC. Retrieved January 1, 2004 from
NASA, Goddard Space Flight Center Web site: http://xml.gsfc.nasa.gov/

IASF.BO (n.d.) The Space Astrophysics and Cosmic Physics Institute of the CNR - Section of Bolo-
gna Homepage. Available from: http://www.bo.iasf.cnr.it/

IBIS.HK (n.d.) User Manual for the IBIS Instrument: TM Housekeepings. Retrieved January 1,
2004 from the IASF CNR Web site: http://www.bo.iasf.cnr.it/Research/INTEGRAL/Documentation/
IBIS_UserManual/IBIS_UM5-1_Vol3_PII_HKs.PDF

Layman, A., Jung, E., Maler, E., Thompson, H.S., Paoli, J., Tigue, J., Mikula, N.H., & De Rose, S.
(1998) XML-Data, W3C Note, 05-01-1998. Retrieved January 1, 2004 from the W3C Web site:
http://www.w3.org/TR/1998/NOTE-XML-data

PTS (1988) PSS-04-106 Packet Telemetry Standard, Issue 1, January 1988, Noordwijk, The Neth-
erlands: ESA Publications Division – ESTEC.

PTS (1992) PSS-04-107 Packet Telecommand Standard, Issue 2, April 1992, Noordwijk, The Neth-
erlands: ESA Publications Division – ESTEC.

Salamone, S. (2002) Should XML Traffic Get Special Treatment?, Networking Under the Micro-
scope newsletter. Retrieved January 1, 2004 from the World Wide Web: http://www.bio-itworld
.com/archive/microscope/091102.html

Shaya, E., Thomas, B., & Cheung, C. (2001) Specifics on a XML Data Format for Scientific Data,
ADASS X Proceedings (pp. 217-220), ASP Conference Series 238, Boston, Massachusetts.

Tavani, M., Barbiellini, G., Argan, A., Auricchio, N., Caraveo, P., Chen, A., Cocco, V., Costa, E., Di
Cocco, G., Fedel, G., Feroci, M., Fiorini, M., Froysland, T., Galli, M., Gianotti, F., Giuliani, A.,
Labanti, C., Lapshov, I., Lipari, P., Longo, F., Massaro, E., Mereghetti, S., Morelli, E., Morselli, A.,
Pellizzoni, A., Perotti, F., Picozza, P., Pittori, C., Pontoni, C., Prest, M., Rapisarda, M., Rossi, E.,
Rubini, A., Soffitta, P., Trifoglio, M., Vallazza, E., Vercellone, S., & Zanello, D. (2001) Science with
AGILE, Proceedings of the 5th Compton Symposium (p. 746), AIP Conference Proc. 510(1),
Portsmouth, New Hampshire.

Thomas, B., Shaya, E., & Cheung, C. (2001) Converting FITS into XML: Methods and Advantages,
ADASS X Proceedings (pp. 487-490), ASP Conference Series 238, Boston, Massachusetts.

Thompson, H.S., Beech, D., Maloney, M., & Mendelsohn, N., (Eds.) (2001) XML Schema Part 1:
Structures, W3C Recommendation, 02-05-2001. Retrieved January 1, 2004 from the W3C Web site:
http://www.w3.org/TR/xmlschema-1/

http://www.bo.iasf.cnr.it/~GSE/ProcessorLib/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xmlschema-0/
http://fits.gsfc.nasa.gov/
http://xml.gsfc.nasa.gov/
http://www.bo.iasf.cnr.it/
http://www.bo.iasf.cnr.it/Research/INTEGRAL/Documentation/IBIS_UserManual/IBIS_UM5-1_Vol3_PII_HKs.PDF
http://www.w3.org/TR/1998/NOTE-XML-data
http://www.bio-itworld.com/archive/microscope/091102.html
http://www.w3.org/TR/xmlschema-1/
http://www.bo.iasf.cnr.it/Research/INTEGRAL/Documentation/IBIS_UserManual/IBIS_UM5-1_Vol3_PII_HKs.PDF
http://www.bio-itworld.com/archive/microscope/091102.html

 Data Science Journal, Volume 3, 3 November 2004 134

Trifoglio, M., Gianotti, F., Stephen, J.B., Celesti, E., Labanti, C., & Traci, A. (2000) Ground support
equipment for scientific tests and calibration of the AGILE instrument, SPIE Proceedings 4140 (pp.
478-485), San Diego, California.

Xalan-Xerces (n.d.) Home page for the Xalan-C++ stylesheet processor and the Xerces-C++
validating parser. Available from the Apache XML Project Web site: http://xml.apache.org/

XDF (n.d.) eXtensible Data Format Homepage. Retrieved January 1, 2004 from the NASA, Goddard
Space Flight Center Web site: http://xml.gsfc.nasa.gov/XDF/

XDR-doc (n.d.) XDR Schema Reference. Retrieved January 1, 2004 from the MSDN Library:
http://msdn.microsoft.com/library/en-us/xmlsdk/html/xmrefxdrschemareference.asp

XML (n.d.) eXtensible Markup Language Homepage. Retrieved January 1, 2004 from the W3C Web
site: http://www.w3.org/XML/

http://xml.apache.org/
http://xml.gsfc.nasa.gov/XDF/
http://msdn.microsoft.com/library/en-us/xmlsdk/html/xmrefxdrschemareference.asp
http://www.w3.org/XML/

	Application of XML Technologies to Telemetry Data Management in Test Equipment for Scientific Satellite Missions
	1 Introduction
	2 The overall project scheme
	3 The Packet Descriptors database
	3.1 The Packet Processor initialization routine

	4 The Packet Processor output format
	4.1 Mapping of the FITS format for use within the AGILE mission

	5 The Packet Processor module
	5.1 PacketLib and ProcessorLib: a quick overview
	5.2 Upgrading the Packet Processor module

	6 The QuickLook module
	7 Conclusions
	8 References

