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ABSTRACT

This paper is concerned with the problem of finding the minimax estimator of the parameter 0 of the Rayleigh
distribution for quadratic loss function by applying the theorem of Lehmann (1950).
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1 INTRODUCTION

In an expository paper, Siddique (1962) discussed the origin and properties of the Rayleigh distribution. Polovko
(1968) and Dyer and Whisenand (1973) noted the importance of this distribution in electro vacuum devices and
communication engineering. Dey and Das (2007) obtained Bayesian predictive intervals of the parameter of
Rayleigh distribution. The probability density function of the Rayleigh distribution is given by:
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where 0 is the parameter of the distribution.

Podder et al. (2004) studied the minimax estimator of the parameter of the Pareto distribution under Quadratic and
MLINEX loss functions. In this paper, we shall estimate the parameter of Rayleigh distribution by using the
technique of minimax approach under quadratic loss function, which is essentially a Bayesian approach. The most
important element in the minimax approach is the specification of a distribution function on the parameter space,
which is called prior distribution. In addition to the prior distribution, the minimax estimator for a particular model
depends strongly on the loss function assumed. The basic difference between the philosophy of the minimax and
classical estimation is that in minimax estimation the parameter of the distribution is assumed to be a random
variable, where as classical estimation regards it as a fixed point.

In this paper, we derive the minimax estimator of the parameter 0 of the Rayleigh distribution under quadratic loss
function. The derivation depends primarily on Lehmann’s Theorem (Lehmann, 1950) and can be stated as follows.

Theorem: Let T = {F0; 00} be a family of distribution functions and D a class of estimators of 6. Suppose that d* ¢
D is a Bayes’ estimator against a prior distribution £*(0) on the parameter space ® and the risk function R(d*, 0) =

constant on ®; then d* is a minimax estimator of 6.

The major result of this paper is contained in this theorem and its discussion is given below.
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2 MAJOR RESULTS

Theorem 2.1: Let X = (X, Xy, . . . , X,) be ‘n” independently and identically distributed random variables drawn
l“ 2n+c
. A 2 52 12 . .. .
from the density (1.1). Then @ yqL = [ 2ntcsl (7 is the minimax estimator of the parameter 0 for the
2

quadratic loss function (QLF) of the type:

LO, d)= (%)2 2.1

where 6 is the parameter to be estimated and d is the estimate of 6.
Note that a loss function of the form L (6,d) = (6 — d)’ is not a minimax estimator for the above distribution.

First we have to prove Theorem 2.1. We use Lehmann’s Theorem, which was stated before. Here, we consider the
quadratic loss function (QLF) of the form

0-d ,
—)

7
which is a non-negative symmetric and continuous loss function of #and d . In order to prove the theorem, it will
be sufficient to show that

L(0,d)=(

2n+c
[ =5 (s )%
= 1—’ 2n+c+l 2 (2'2)
2
is @ minimax estimator of 0 for the loss function (2.1). For this, first we have to find the Bayes’ estimator d of 0.
Then, if we can show that the risk function of d is constant, the Theorem 2.1 will be followed. Let us assume that 0
has non-informative prior density defined as

d

1
g(0) « 7° ; 0>0,c>0 2.3)
When ¢ =3, we get the ALI prior for the Rayleigh pdf (1.1) because of Hartigan (1964).

As pointed out in (1.1), the likelihood function of the distribution of f(x| 0) is given by

SZ
n P
L(x;,%X5,...,%, | 0) = (Hxi)Hfzne 20° (2.4)
i=1
Assuming that the parameter 6 is unknown, the maximum likelihood estimate (MLE) of the parameter 8 can be
shown to be

n S?2
Ovie = (_)1/2
2n

Combining the likelihood function (2.4) and the prior g(0) in (2.3), the posterior distribution of 6 via Bayes’

Theorem for the given random sample X = (xy, X5, . .. ,X,) 1S

2
S
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o — 8
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On simplification, we get,

2 2n+c-1 s’

S Yy
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(2)

_ 2.5
1ﬂ(2n-|-20—1)92n+c (2:3)

Now, for the QLF (2.1), the Bayes’ estimator of 0 is given by

<1 “ 1 B 2
6[57[(0|x)d9 gme 20 do
d = =

7(0|x)do T 1

92n+c+2

SZ

e 2040

o8

L
0?
0

On simplification, we get,
2n+c 1
F 2 (ﬁ)é ) no
d = 1—‘ 2n+c+l 2 ; S°= lei (2'6)
2 =

The risk function of the estimator d is

R(0)=E[L(B]d)]

=i[6>2 —20E(d)+E(d*))]
&
r(2n+c) F(2n+c) 1

_ L 2 2 a2t
_92[0 29F(2n+c+1 \/_E(S) ( (2n+c+l)) 2 EG6H

2 2

2n+c 2n+c
5ty TETO)

2 2
n( ) 2.7
F(2n+2c+l) I'n r(2n+2c+l)

=11-24/2n

which is constant.

Therefore, according to Lehmann’s Theorem, it follows that

2n+c
F 2
d= 0Oy, =

1
2
[ 2ntesl (ST)A is the minimax estimator of the parameter 0 of the Rayleigh distribution under
2

QLF of the form (2.1).
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3 EMPIRICAL STUDY

Mean Squared Errors (MSEs) are considered to compare the different estimators of the parameter 0 of the Rayleigh
distribution and are obtained by the Maximum likelihood and Minimax for Quadratic Loss function methods. The
MSE of an estimator is defined by

MSE(0)=E[(0- 0)]>=Var(0 )+ [ Bias( )]

The estimated values of the parameter and MSE of the estimators are compared by the Monte-Carlo Simulation
Method, using the Rayleigh distribution.

Table 1. Estimated values and MSEs of different estimators for the parameter 6 of the Rayleigh distribution when
0=1and c=1

Sample Size Criteria 6 vor O viie
5 Estimated Value 0.9504 0.9744
MSE 7.7187 7.8239
10 Estimated Value 0.9696 0.9818
MSE 0.7906 0.7908
20 Estimated Value 0.9863 0.9924
MSE 0.1006 0.1008
25 Estimated Value 0.9876 0.9925
MSE 0.0567 0.0568
30 Estimated Value 0.9915 0.9957
MSE 0.0335 0.0336

Table 2. Estimated values and MSEs of different estimators for the parameter 0 of the Rayleigh distribution when
6=1andc=-1

Sample Size Criteria 0 vor O viie
5 Estimated Value 1.0547 0.9732
MSE 9.8513 8.1132
10 Estimated Value 1.0250 0.9860
MSE 0.8128 0.7394
20 Estimated Value 1.0169 0.9977
MSE 0.1101 0.1039
25 Estimated Value 1.0156 1.0003
MSE 0.0563 0.0534
30 Estimated Value 1.0139 1.0012
MSE 0.0309 0.0295
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Table 3. Estimated values and MSEs of different estimators for the parameter 0 of the Rayleigh distribution when

0 =1 and c =2
Sample Size Criteria 0 vor O viie
5 Estimated Value 0.8984 0.9639
MSE 7.8057 7.3995
10 Estimated Value 0.9416 0.9764
MSE 0.9382 0.9051
20 Estimated Value 0.9661 0.9841
MSE 0.1076 0.1043
25 Estimated Value 1.0067 1.0048
MSE 0.0416 0.0415
30 Estimated Value 0.9854 0.9976
MSE 0.0211 0.0209

Table 4. Estimated values and MSEs of different estimators for the parameter 0 of the Rayleigh distribution when

0=landc=-2
Sample Size Criteria 0 vor O ik
5 Estimated Value 1.1154 0.9670
MSE 10.4373 6.5056
10 Estimated Value 1.0462 0.9788
MSE 0.9977 0.8197
20 Estimated Value 1.0150 0.9828
MSE 0.0977 0.0922
25 Estimated Value 1.0123 0.9867
MSE 0.0422 0.0403
30 Estimated Value 1.0088 0.9877
MSE 0.0285 0.0276

Table 5. Estimated values and MSEs of different estimators for the parameter 0 of the Rayleigh distribution when

06=landc=3
Sample Size Criteria 0 vor O e
5 Estimated Value 0.8675 0.9702
MSE 8.0569 6.9153
10 Estimated Value 0.9285 0.9850
MSE 0.9446 0.8789
20 Estimated Value 0.9564 0.9859
MSE 0.1066 0.0989
25 Estimated Value 0.9793 1.0035
MSE 0.0489 0.0492
30 Estimated Value 0.9855 1.0058
MSE 0.0265 0.0270
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Table 6. Estimated values and MSEs of different estimators for the parameter 0 of the Rayleigh distribution when

60=1andc=-3
Sample Size Criteria 0 vor O viie
5 Estimated Value 1.2062 0.9739
MSE 17.9522 7.6486
10 Estimated Value 1.0880 0.9885
MSE 1.0695 0.6739
20 Estimated Value 1.0465 0.9997
MSE 0.1226 0.0963
25 Estimated Value 1.0375 1.0006
MSE 0.0591 0.0484
30 Estimated Value 1.0353 1.0047
MSE 0.0306 0.0248
Figure 1:Graph of MSE for different values of n under MQL
and MLE when Theta=1 and C=1
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Figure 3:Graph of MSE for different values of n under MQL and
MLE when Theta=1and C=2
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Figure 4:Graph of MSE for different values of n under MQL and
MLE when Theta =1 and C=- 2
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Fig.5:Graph of MSE for different values of n under
MQL and MLE when Theta=1 and C=3
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Fig.6:Graph of MSE for different values of n under MQL
and MLE w hen Theta=1 and C=-3
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4 CONCLUSION

It can be seen from Tables 1, 3, and 5, along with Figures 1, 3 and 5, that the minimax estimator under squared error
loss function and the classical maximum likelihood estimator have approximately the same MSEs when the value of
‘¢’ is positive and sample sizes n>30. Also, it can be seen from Tables 2, 4, and 6, along with Figures 2, 4, and 6,
that for small as well as for large sample sizes, the classical maximum likelihood estimator appears to be better than
that of minimax estimator under quadratic loss function when the value of ‘¢’ is negative. It is also to be noted that
Hartigan’s prior gives better results than Jeffrey’s prior when n > 25.
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