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ABSTRACT 

With the development of computer graphics and digitalizing technologies, 3D model databases are becoming 
ubiquitous. This paper presents a method for content-based searching for similar 3D models in databases. To 
assess the similarity between 3D models, shape feature information of models must be extracted and compared. 
We propose a new 3D shape feature extraction algorithm. Experimental results show that the proposed method 
achieves good retrieval performance with short computation time. 
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1  INTRODUCTION 
 
Nowadays, 3D model databases have emerged in many applications, such as mechanical engineering, medical 
visualization, virtual reality, and computer animation. To facilitate the management of these databases, we need a 
way to search and retrieve 3D models. Traditional methods for searching multimedia data use attached information, 
such as textual annotation. Finding a 3D model by textual keywords suffers from the following problems: 

 Text descriptions may be inaccurate, incorrect, ambiguous, or in a different language. 
 Many 3D models may not have attached text annotation. Manually annotating them is a tedious and 

error-incurring work. 
 It is hard for users to query by using just text to describe a complex 3D shape. 

 
For these reasons, it is necessary to develop a method for content-based 3D model searching. Content-based 
searching means that a search system can find 3D models similar to a query model automatically. The search system 
provides a “query-by-example” query interface. Users can submit an example model as a query, and then the search 
system returns models according to their shape similarity. 
 
The key problem with content-based 3D model searching is how to extract the shape feature information from 3D 
models effectively. Shape feature information is usually expressed as vectors (shape feature vectors). The similarity 
among 3D models can be measured by computing the distance between shape feature vectors under a predefined 
metric. Figure 1 illustrates the workflow of a search system for 3D model databases. 
 

 
Figure 1. Workflow of a searching system for 3D model database 

Data Science Journal, Volume 7, 8 April 2008

46



This paper proposes a new shape feature extraction algorithm, which is an enhanced version of the traditional D2 
shape distribution. We implemented a demonstration instruction 3D model search system based on the proposed 
method. Experiments show that the performance of the system is satisfactory. 
 
The rest of the paper is organized as follows: some related work is summarized in Section 2. In Section 3, we 
discuss the problem of a traditional D2 approach and describe our method in detail. Section 4 presents a 
demonstration instruction 3D model search system based on our method with experimental results. Finally, 
conclusions are given in Section 5. 

2  RELATED WORK 
 
In recent years, researchers have proposed many shape feature extraction algorithms. These algorithms can be 
generally classified into two groups: variant and invariant (Tangelder & Veltkamp, 2004). Because a 3D model may 
have an arbitrary position, size, or pose in 3D space, when using a variant shape feature, models need to be 
normalized for translation, scale, and rotation before assessing shape similarity. Studies have found that the 
traditional methods for translation and scale normalization provide good search results, but methods for rotation 
normalization are not robust. The PCA (Principal Component Analysis) is a commonly used method for rotation 
normalization. In the literature (Funkhouser et al., 2003), it is found that some similar 3D models have different 
principal axes defined by PCA. 
 
An invariant shape feature describes any transformation of a shape in the same way and doesn’t need normalization. 
Because of the lack of an effective method for rotation normalization, how to extract a great deal of 
rotation-invariant shape features attracts great interest. Osada et al. (2002) proposed a rotation invariant shape 
feature extraction algorithm called D2 shape distribution. D2 describes the shape feature of a 3D model by 
calculating the distribution of distances between random points on the surface. D2 has many good properties, such 
as quickness in computation and concise storage. Experiments by Osada et al. demonstrate that D2 can effectively 
discriminate grossly dissimilar models. However, it is possible that dissimilar models may have very similar D2 
histograms. To reduce this problem, this paper proposes a new D2 shape distribution that works on 3D models 
represented as voxel models. 

3  SHAPE FEATURE EXTRACTION 
 
Osada’s D2 algorithm works on 3D mesh models. A mesh model defines a 3D object by describing its surface. 
There are two main steps in Osada’s approach: 1) generating random points on the surface of a 3D mesh, and 2) 
calculating distances between every pair of points and forming a histogram of these distances (see Figure 2). In a D2 
histogram, the horizontal coordinate denotes the distance between points, and the vertical coordinate denotes the 
calculated frequency of the D2 distance distribution function. For a given distance d  and a point set P , the D2 
distance distribution function at value d  can be expressed by the following equation: 

 2
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where qp −  denotes the Euclidean distance between p  and q , and •  is the cardinality of a set. 
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Figure 2. D2 shape distribution 
 
Because Osada’s D2 approach only uses a simple distance distribution to describe 3D shape, it is possible that 
dissimilar models have similar D2 histograms. We can see in Figure 3 that a table and a car have very similar D2 
histograms. 

 
Figure 3. D2 histograms of a table and a car 
 
To improve the discriminability of D2, we can enrich the distance information by differentiating the inner and outer 
line segments between a pair of sampling points. This idea is illustrated in Figure 4, where ji PP  is the line 

segment between two sampling points iP  and jP . GPi  is the part of ji PP  that is inside the model. The 

distribution of the ratio jii PPGP /  can be used as a supplement to help the D2 algorithm filter out dissimilar 

models. We denote the distribution of this ratio as DIR.  
 

 
Figure 4. Inner and outer line segments between two sampling points 
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Figure 5. DIR histograms of the table and the car 
 
Figure 5 illustrates the DIR of the table and car from Figure 3. We can see that the two DIRs are obviously different. 
The DIR of the table indicates there are many low ratios because the table is generally a concave model and many 
line segments lie outside it. In contrast, the car is rather convex, so there are a large number of line segments inside 
it, and its DIR is dominated by high ratios. Generally DIR provides additional shape information than provided by 
D2. We can use the DIR to filter out dissimilar models that D2 is unable to distinguish. The dissimilarity between 
3D models A and B can be measured by a weighted sum of D2 and DIR: 

 1 2

1 2
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where 1w  and 2w  are weights for D2 and DIR. In the later of this section, we will discuss how to determine these 

weights through user feedback. ),(2 BAD  and ),( BADIR  compute the 1L  norm of the histograms of D2 and 
DIR respectively: 

 BA HistogramDHistogramDBAD 22),(2 −=
 (3) 

 BA IRHistogramDIRHistogramDBADIR −=),(  (4) 

Suppose that a histogram contains n  bins: 1 2{ , ,... }nh v v v= . The 1L  norm of histograms is computed as the 
following equation: 
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To facilitate computing the length of inner and outer line segments, we convert 3D models into a voxel model. The 
voxel model is a type of 3D data that uses volume elements (voxels) to represent an object in discrete 3D space 
(Kaufman et al., 1993). A voxel is a cubic unit of volume that can be seen as the 3D counterpart of the 2D pixel 
representing a unit of area. Mesh models just define the surface of objects. Thus it is difficult to determine which 
part of a line is inside or outside the models. On the contrary, a voxel model is a 3D solid, of which the inner and 
outer are explicitly defined. It is easy to determine which part of a line is inside or outside on voxel model. For 
surface-based models in 3D continuous space, such as mesh or B-rep, the computer graphics community has 
proposed algorithms that can convert them to voxel models very quickly by exploiting the hardware acceleration of 
display adapters. Figure 6 illustrates a 3D mesh model and its corresponding voxel model. 
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Figure 6. A mesh model and the corresponding voxel model 

 
The voxel model also provides a way to accelerate the calculation of DIR. When calculating the length of an inner 
line segment, one needs to repeatedly calculate whether the line intersects with a voxel. To accelerate the line-voxel 
intersection calculation, we can employ the octree-based spatial subdivision. Octree (Samet, 1990) is a hierarchical 
representation that subdivides the full voxel space into octants. When testing the intersection between the line and 
voxels, the octree structure can reduce the computational complexity significantly by searching through the voxel 
space hierarchically. 
 
In Equation (2), we use a weighted sum to combine two metrics D2 and DIR into a unified metric. To determine the 
weights w1 and w2, we use the information from Relevance Feedback (RF) to estimate them. RF makes the search 
process an interaction between the computer and user. For an RF-based search process, the system first retrieves 
similar models and returns them to the user. Then, the user provides feedback regarding the relevance of some of the 
retrieval results (the user marks the relevant models in the results and submits them back to the search system). 
Finally, the system uses the feedback information to improve the performance in the next iteration (Baeza-Yates et 
al., 1999, Rui et al., 1998). 
 
w1 and w2  should respectively reflect the effectiveness of D2 and DIR in retrieval. The more tightly a metric makes 
the known relevant objects distribute in its feature space, the more effective it is. Suppose that q denotes a query and 
R is the set of relevant models marked by user in the initial retrieval results. w1 and w2 are estimated by the following 
equations:
 

 
For a given element '

ir , maxdis  is the maximum of distances between '
ir  and all other elements in 'R  under the 

metric D. D denotes the metric D2 or DIR (when t=1, D is D2; when t=2, D is DIR). The sum of maxdis  over all 
elements in 'R  reflects the tightness of known relevant objects. A smaller sum indicates a tighter set and vice versa. 
In our tests, the initial values of w1 and w2 were both set to 0.5. Then we use over 200 queries and corresponding 
feedback sets to estimate heuristically the weights w1 and w2. We obtain that 1w =0.63 and 2w =0.37. 
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4  EXPERIMENTAL RESULTS 
 
We use the PSB (Princeton Shape Benchmark) (Shilane et al., 2004) to evaluate the performance of the proposed 
method. We compare the proposed method with three other rotation invariant shape feature extraction algorithms: 
Osada’s D2, shell histogram (Ankerst et al., 1999), and sphere harmonics (Kazhdan et al, 2003). 
 

We employ the “precision-recall” curve method (Raghavan et al., 1989) to measure retrieval performance. 
“Precision” measures the ability of the system to retrieve only models that are relevant, and “recall” measures the 
ability of the system to retrieve all models that are relevant. Let C be the number of relevant models in the database 
(namely the number of models in the class to which the query belongs). Let N be the number of relevant models that 
are actually retrieved in the top A retrievals. Then, precision and recall are defined as follows: 

N
precision

A
=   N

recall
C

=                           (7) 

There is a trade-off between precision and recall. In recall-precision diagrams, a perfect retrieval result would 
produce a horizontal line at the top of the plot. Otherwise, a curve closer to the upper-right corner represents better 
performance. 

 
Figure 7. Precision-recall plots 
 
Figure 7 shows the precision-recall plots of the four tested methods. We can see that the precision of the proposed 
method is close to that of sphere harmonics and is obviously better than that of the other two. Figure 8 illustrates 
some search results returned by our method. The model in the green box (upper left corner) is the query model. 
Models in blue boxes are correctly retrieved models, and models in red boxes are the mismatched ones. 
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(a) 

 

 
(b) 

Figure 8. Search results of the proposed system (a) results of a query model of human body (b) results of a query 
model of sword 

 
Table 1 lists the average computation time of the four methods. The computation time of the proposed enhanced D2 
method is much less than that of sphere harmonics and is only a little more than that of Osada’s D2 approach. 
 
Table 1. Average computation time 

 Shell 
histogram 

Osada’s D2 Our method Sphere 
harmonics 

Times 2.02 4.11 4.83 7.02 
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5  CONCLUSION 
 
In this paper, we present a method for searching 3D model databases. A new 3D shape feature extraction algorithm 
is proposed, based on the voxel representation of 3D models. We implement a demo instruction search system based 
on the proposed shape feature extraction algorithm. Experiments show that the system achieves a good performance. 
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