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ABSTRACT 
 
Linear regression (LR) and support vector regression (SVR) are widely used in data analysis. Geometrical 
correlation learning (GcLearn) was proposed recently to improve the predictive ability of LR and SVR through 
mining and using correlations between data of a variable (inner correlation). This paper theoretically analyzes 
prediction performance of the GcLearn method and proves that GcLearn LR and SVR will have better prediction 
performance than traditional LR and SVR for prediction tasks when good inner correlations are obtained and 
predictions by traditional LR and SVR are far away from their neighbor training data under inner correlation. 
This gives the applicable condition of GcLearn method.  
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1  INTRODUCTION 
 
In multivariate data analysis, linear regression (LR) and support vector regression (SVR) (Lin, 2001; Meyer et 
al., 2003; Zhou et al., 2006; Chang & Lin, 2006) are widely used to analyze the relationship between a 
dependent variable and a set of independent variables, and a regression model between variables by LR and 
SVR methods may be used for prediction tasks (Chen et al., 2004; Wagner et al., 2005; Sinnakaudan et al., 
2006). When a regression model is constructed for 1-dimensional continuous variables, dependency relations 
among variables are the focus, but correlations between data of a variable are usually neglected. It is expected to 
improve predictive ability of LR and SVR methods by using this correlation information.  
 
Let Y be the response variable of some 1-dimensional dependent variables and have n data. The space relation of 
the n data points in 1-dimensional coordinates y, i.e., T={y1, y2, y3, …, yn} where y1≤y2≤y3≤…≤yn, is called value 
correlation of the data, while the neighbor relation between the n data points with some varying trends is called 
trend correlation. The value correlation indicates which data points are close each other in 1-dimensional 
coordinates, and the trend correlation is usually from additional information and prior knowledge about 
correlations, e.g., the trend correlation is time relation if the n data points are time series and vary with time. 
Both value correlation and trend correlation are called inner correlations, and an inner correlation represented 
by a geometric entity is called a geometrical correlation.  
 
Recently, geometrical correlation learning (GcLearn) (Wang et al., 2007) has been proposed to mine and use the 
inner correlations inherent in data for LR and SVR methods. GcLearn method can improve the predictive ability 
of LR and SVR methods, as it makes use of additional information - inner correlations of data, while traditional 
LR and SVR methods do not. First, GcLearn finds inner correlation T from data of the response variable. 
According to T, GcLearn projects the 1-dimensional data of each variable to a 2-dimensional smooth curve 
(called a curve manifold), which is approximated by piecewise quadratic polynomial curves. Thus, a curve 
manifold represents data of a variable and shows their geometrical correlation. Then, a regression model for 
variables is found by the designed geometric regression method and by minimizing the fitting error of the model 
to curve manifolds. Finally, the optimal regression model F is found through an optimization process for 
piecewise curve approximation. When we predict with model F, test datum x of predictor variable X is also 
projected to x' on the curve manifold of X (it is similar for other predictor variables), and then the x' is used as 
the input to model F for predictions.  
 
In this paper, we theoretically analyze the prediction performance of GcLearn LR and SVR methods and prove 
that the GcLearn LR/SVR method gives better prediction performance than the traditional LR/SVR method 
when good inner correlations are obtained and predictions from a LR/SVR model are bad. The GcLearn method 
from our previous work is introduced in Section 2, and the theoretical analysis of its prediction performance is 
in Section 3. Finally, the conclusion is given in Section 4. 
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2  GCLEARN LINEAR AND SUPPORT VECTOR REGRESSIONS  
 
The GcLearn method (Wang et al., 2007) is briefly introduced in this section. The GcLearn method includes 
finding inner correlations, projecting data to curve manifolds as per inner correlations, finding a regression 
model from curve manifolds and predicting with the found model.  
 
The first work is to find inner correlations and project the data of each variable to a 2-dimensional smooth curve 
M so that the M represents the data and their geometrical correlations. The value correlations are mined from 
data while the trend correlations of the data depend on or are gained by prior knowledge about correlations, e.g., 
the trend correlation is time relation if the n data points are time series and vary with time. Here we introduce 
the whole procedure by an example of value correlations, and it is similar for trend correlations. It is hard to 
make one curve for all the data of a variable reasonably and accurately in all cases, so we approximate the M via 
piecewise curves; each fit to partial data, including data division, making of a piecewise curve fitting to a data 
group, and connections of piecewise curves. The construction of such M is discussed within the framework of 
manifold theory (Chen, 2001). 
 
Let variable Y be the response variable of q 1-dimensional continuous dependent variables and have n data 
points. The value correlation is obtained when the n data points are placed in 1-dimensional coordinates y, i.e., 
T={y1, y2, y3, …, yn} where y1≤y2≤y3≤…≤yn. Then, natural numbers are adopted to represent T for constructing 
M, i.e., T={1,2,3, …, n} instead of and corresponding to {y1, y2, y3, …, yn}. Let the n data be divided equally 
into k groups each with m=n/k data along T (e.g., second group {ym+1, ym+2, …, ym+m}) and each data group be 
called local data. To simplify discussion, the notation yj∈R (j=1,2,…,m) is adopted for each data group.  
 
Then, GcLearn projects the n data points onto a 2-dimensional smooth curve M (called curve manifold) (Chen, 
2001) in space yOt (coordinates t is used to denote T): 

1~P : { } :j n ijy M M U= → =U ,                       (1)               
where local region Ui of M is described by a piece of quadratic polynomial curve Ci: y=ƒi(u) (u∈[1,m]) under 
local coordinate system yOu (coordinates u are used to denote a part of T for local data). The piecewise curve 
y=ƒi(u) fits to the data of ith group (m pairs of {yj,uj} where uj=j and j=1,2,…,m) and is found by a least-squares 
fit (Mo & Liu, 2003; Wolfram, 2007). The united local regions need to be connected smoothly so that their 
joints are continuous and smooth, but in real applications, we do not do this difficult work on account of slight 
influence on outcomes.  
 
The next step is to design a geometric regression method to construct a regression model with curve manifolds, 
which is discussed by example of the linear regression between two variables. The least-squares fit method 
combined with integral computation of curve manifolds for solving a regression equation is called as geometric 
regression method. Let there be a linear regression equation for predictor variable X and response variable Y, 
and let same coordinate system xOu be used for local regions of curve manifold XM and the same yOu for YM . 
Then, any point of a local region of XM is (x,u) and any point of YM is (y,u).  
 
Theorem 2.1 (Geometric regression). Let 0y xφ φ= + be the linear regression equation between variables X and Y 
(their curve manifolds are XM and YM ). Let every curve manifold comprise k local regions and the local region 
of XM be ( )lgx u= and the one of YM be ( )ly f u= , where 1 2[ , ]u u u∈ and l=1~k. And the means of x values of 

XM and the means of y values of YM are set as follows: 
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=−= ∑∫ ,                                        (2)               
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The least-squares fit method is used to solve for the coefficients of 0y xφ φ= +  with XM and YM , and then the 
regression coefficients are: 

 yx xxL Lφ = ,                                                    (4)                
 0 y xφ φ= −  ,                                                     (5)                

where 
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This theorem tells how to solve for unknown coefficients of a linear regression equation with curve manifolds. 
The geometric regression of SVR has a similar principle, and the integral value of every local region instead of 
original data is used as input data for traditional SVR.  
 
The final step is to find an optimal regression model F by the goodness of model fitting to curve manifolds. A 
geometrization parameter v (v=1,2,…,n) is defined as the unified length of every local region, and then k=n/v is 
the number of divided data groups. The length of every local curve is set to be 3v, and the central 1/3 part of a 
local curve is taken as the local region of a curve manifold (called central cutting). The central cutting makes 
neighbor data groups overlapping, but there is no overlapping between neighbor local regions. This optimization 
problem can be solved by finding an optimal v (v=5~14 is the proper searching scope as per our experiences) to 
minimize the residual sums of squares of model fitting: 
 

               2( ) ( ) 2yy yx xxRSS RSSv k L L Lφ φ= = − + ,                                 (9)                
               arg min ( )o RSSv v= .                                             (10) 

With the optimal parameter v0, the optimal curve manifolds are constructed, and then the optimal regression 
model F is found with the optimal curve manifolds. 
 
When we do a prediction, the above work is done under a uniform value correlation T for both test and training 
data. The uniform T is established by using prediction values of Y (other than test and training data of Y), which 
are derived from the regression model by traditional LR/SVR. Then, under the T, all the data are projected to 
curve manifolds, and the optimal regression model F is found with the parts of curve manifolds corresponding 
to training data. For example, the curve manifold XM is constructed for both test and training data of X 
according to T. Thus, the test datum x is also projected to x' on the XM (we say that the x' is on XM instead of (x', 
u) on XM for simplification), and then the x' is used as input of model F and the output (e.g., 0' 'y xφ φ= + ) is its 
prediction. 
 
The experiments on artificial and real data are performed to evaluate prediction performance of GcLearn LR and 
ε-SVR (SVR with radial basis kernels) methods based on 10-fold cross validation and mean squared errors. For 
the linear and nonlinear artificial data sets with different Gaussian noise variances from 0.2 to 2.2, the 
experimental results show that GcLearn LR and ε-SVR reduce prediction errors by about 45% - 80% compared 
with traditional LR and ε-SVR. For benchmark real-world data sets (the pyrim, servo, auto-price, cpu, and 
auto-mpg) from UCI database (Blake & Merz, 1998), the experimental results show that GcLearn LR and 
ε-SVR reduce prediction errors by about 4% - 46% compared with traditional LR and ε-SVR.  
 
3  PERFORMANCE ANALYSIS 
 
For a performance analysis of GcLearn LR and SVR methods compared with traditional LR and SVR, we have 
theorem 3.1 for the lowest performance and theorem 3.2 for better performance of GcLearn LR and SVR 
methods when prediction errors are used for performance evaluation. Proofs for both theorems are given in 
Appendices 7.1 and 7.2 respectively. 
 
The performance of (GcLearn) LR/SVR method is defined to be predictive ability of a regression model by 
(GcLearn) LR/SVR method. The predictive ability is assessed by prediction errors, the mean squared error 
between the prediction values of a regression model on test data, and the true values of test data. Thus, the 
performance analysis refers to the comparison of predictive ability between the GcLearn LR/SVR method and 
the traditional LR/SVR method. 
 
It is known that a local region Ui of M corresponds to a piece of quadratic polynomial curve Ci: y=ƒi(u) 
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(u∈[1,m]) in yOu, and the local curve y=ƒi(u) fits to ith data group with m pairs of {yj,uj}. The projection of a 
data group to a local region of M is called local projection. Corresponding to the minimum parameter v=1, the 
minimal local projection is that every data group with 3v=3 data is fitted to a local curve Ci, whose central 1/3 
part with a length of 1 is taken as local region Ui of M.  
 
Under the minimal local projection, three cases appear as follows. First, the corresponding projection points 
(yj,uj) on Ui/Ci are the same as the original data pair {yj,uj} (j=1,2,3) of ith data group on account of the principle 
that a curve is determined by three points in a plane, so the function of the geometrical correlation disappears. 
Second, the integral value of the central part of curve Ci is approximately equal to original data y2, so the 
geometric regression method is almost the same as traditional regression method. Third, the following theorem 
3.1 states that GcLearn LR and traditional LR methods give approximately same regression equation.  
 
Theorem 3.1 (Minimal geometric regression) Let there be a linear dependent relation for q 1-dimensional 
continuous variables. If the geometric regression is performed based on minimal local projection, the resulting 
regression equation for q variables is approximately the same as that found by the traditional linear regression 
method. 
 
Therefore, the GcLearn LR and traditional LR methods have almost the same performance under the minimal 
local projection owing to above three cases or reasons, which indicates the lowest performance of the GcLearn 
LR and SVR methods. The conclusion is the same for GcLearn SVR under the minimal local projection, as 
there are same reasons mentioned above, and both the GcLearn SVR and traditional SVR use the same SVR 
procedure and method to infer a regression model. 
 
The better performance of GcLearn under the larger local projection (v>1) will be discussed as follows. It is 
known that GcLearn uses inner correlations between test and training data. Both the test and training data are 
projected to the same curve manifolds, so the test and training data are correlated through the geometrical 
correlation or curve manifolds. Under larger local projection, the geometrical correlation will take effect, and 
the test datum x of predictor variable X are projected to x' on the XM (we say that the x' is on XM instead of (x', u) 
on XM for simplification), and then the x' is used as input of a regression model.  
 
Let there be good inner correlation T between test data and training data (test data are close to some training 
data under T). It is expected for GcLearn LR that the prediction by GcLearn LR model on a test datum is on 
the ZM of response variable Z (this is the first condition), which means that this prediction is close to its 
neighbor training data under T so that this prediction tends to (nearby) its true value. The second condition is 
that traditional LR method gives the prediction of the same test datum far away from its neighbor training data 
under T, which means that this prediction is far away from its true value. When the two conditions are satisfied, 
we can conclude that GcLearn LR method has better prediction performance than traditional LR method.  
 
The following theorem 3.2 states that GcLearn will give its prediction z'k on ZM under the good inner correlation 
T even if test datum xk of X is far away from XM , which indicates that GcLearn LR satisfies the first condition. 
Therefore, by adding theorem 3.2 to the second condition, we conclude that GcLearn LR method will have 
better prediction performance than traditional LR method when good inner correlations are obtained and the 
predictions by traditional LR method are far away from their neighbor training data under correlation T.  
 
Theorem 3.2 (Geometric projection). Let a linear dependent relation be given for q 1-dimensional continuous 
variables, each with n+1 data points and a good inner correlation T. Let curve manifolds XM and ZM  be 
constructed under T for predictor variable X and response variable Z respectively. Let there be a test datum xk and 
n training data points {xi} (i=1~n+1, i≠k, n>3) for variable X. If the xk far away from XM makes the prediction zk 
by traditional linear regression far away from ZM , GcLearn linear regression will give its prediction z'k on 

ZM . 
 
The conclusion is the same for GcLearn SVR, as GcLearn projects the curve manifold XM to ZM by the 
nonlinear regression model ( )z f x= learned from curve manifolds of training data and transforms the xk 
deviating from XM to the x'k on XM , so the prediction z'k by ( )z f x= is on ZM .  
 
4  CONCLUSION 
 
The theoretical analysis demonstrates that the GcLearn LR and SVR methods will have better prediction 
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performance than traditional LR and SVR methods for prediction tasks when good inner correlations are 
obtained and the prediction results by traditional LR and SVR methods are bad or far away from their neighbor 
training data under the inner correlations. This conclusion also indicates the application condition of the 
GcLearn method. 
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7  APPENDICES 
 
7.1 Proof of Theorem 3.1 
 
Proof. Let n groups of data Di = 1{ ,..., }ii qx x (i=1,…, n) corresponding to q variable X1, …, Xq be given and 
correspond to their inner correlations T={1,2,3,…,n}. Using these data, we can find a linear regression 
equation of the q variables under least square regression error (or traditional linear regression method): 
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1( ,..., ) 0qX Xf = .                               (11)                
 
Without losing generality, let q=2 and the linear regression equation between response variable Y and variable X 
be 

L1: 0y xφ φ= + .                                    (12)                
By the method of least-squares fit, the coefficients of regression equation L1 may be found with n pairs of data 
Di ={ , }i iy x (i=1,…, n): 
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0 y xφ φ= − ,                                      (14)              
where y denotes the mean of iy and x the mean of ix . Then, we have 

L2: 0y xφ φ= + .                                    (15)                
 
Now, we consider the geometric regression method under minimal local projection. Let k=n data divisions of 
variable X under T be ready under minimal local projection. Then every three neighbors 1ix − , ix , 1ix + are fitted 
to a local quadratic polynomial curve 2( ) + +i i iix g u a u b u c= = in the local coordinate system xOu, where 
correlation coordinates u∈{u0, u0+1, u0+2}. Then, k local curves are joined to form manifold MX according to 
correlation T. Similarly, local quadratic polynomial curve ( )iy h u= and curve manifold MY are ready for 
variable Y. 
 
Being different from the above traditional method of using the statistic of n pairs of data Di, the geometric 
regression uses curve manifolds and the integral of curves. Let the same integral region [u0, u0+2] be adopted to 
cover three neighbor data Di-1, Di and Di+1. As the central cutting of a local curve for overlapping data divisions, 
the 0 1( )i ix g u= + may be used as the approximation of any x on ( )ix g u= in the short region [u0+0.67, u0+1.33]. 
Similarly, the 0 1( )i iy h u= + is the approximation of any y on ( )iy h u= . 
 
Let every variable be described by k=n local curves. Then the coefficients of regression equation L1 may be 
found as per theorem 2.1: 

ˆ yx xxL Lφ = ,                                   (16)                 
where 
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Similarly, 
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=
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Hence, 

φ̂ φ≈ ,                                              (19)                

0φ̂ 0
ˆy xφ φ= − ≈ ,                                    (20)               

L3: Y=φ̂ X+ 0φ̂ .                                       (21)                
Thus, L3 is approximately the same as L2. 
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7.2 Proof of Theorem 3.2 
 
Proof. The relation between two variables is first discussed, and then more variables added. 
(1) Predictor variable X and response variable Z have a linear dependent relation. 
Let n pairs of data Di={xi, zi} (i=1~n+1, i≠k) be given and satisfy the linear regression equation L1: 

L1: z=a1x+a0.                                             (22)                 
It is known that good inner correlation T holds for Di and the corresponding geometrical correlation is 
represented by MX and MZ. 
 
Without losing generality, let test datum xk rank in the middle of data {xi} (i=1~n+1) under correlation T. As xk is 
far away from MX, its neighbors, and zk is obtained by L1: 

zk=a1xk+a0,                                               (23)                
the zk is far away from MZ, its neighbors. 
 
Now, we consider the linear geometric regression. According to T, the n+1 data {xi} are projected to curve 
manifold MX, where a quadratic polynomial curve CX is for the neighbors of xk (where u is the correlation 
coordinate): 

                          CX : 2
2 1 0'( )= + +x u u uβ β β .                                  (24)                

Then, the corresponding point of xk on CX is (x'k, uk), or xk is projected to x'k: 
                          2k k kk 2 1 0' '( ) + +x x u u uβ β β= = .                                (25)                 

Thus, the (xk, uk) far away from MX is projected to (x'k, uk) on MX (see Figure 1). 
 
Let the geometric regression project MX to MZ or (x, u) to (z, u) by linear regression equation L2: 

                          L2: z=b1x+b0.                                               (26)                
With (x'k, uk) on MX for L2, we have 

                          z'k=b1x'k+b0.                                                (27)                
Hence, the (z'k, uk) is on MZ. 
 

 
 
Figure 1.  xk far away from MX is projected to x'k on MX, and then the x'k is projected to z'k on MZ. 
 
(2) q>2 variables with a linear dependent relation. 
Without loss of generality, let predictor variables X and Y and response variable Z have a linear dependent 
relation, their n groups of training data Di={xi, yi, zi} (I=1~n+1, I≠k) satisfy linear regression equation L3: 

                       L3: z=a1x+a2y+a0.                                              (28)                 
It is known that the prediction zk is far away from MZ by L3 on account of test datum xk far away from MX. 
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i) When only datum xk is far away from MX or its neighbor data, the zk is affected mainly by the xk. This case is 
similar to (1) so that we have the same conclusion as (1). 
 
ii) When both a1 and b1 are positive (or negative), and both positive xk and yk are far away from MX and MY This 
case is similar to (1) so that we have the same conclusion as (1). 
 
iii) Other cases except i) and ii) for the xk far away from MX: 
Let the linear geometric regression project MX and MY to MZ or (x, y, u) to (z, u) by linear regression equation L4: 

                     L4: z=b1x+b2y+b0.                                                (29)                 
 

And let the xk and yk be projected to the (x'k, uk) and (y'k, uk) on curve manifold MX and MY respectively. With x'k 
and y'k for L4, we then have 

                     z'k= b1x'k+ b2y'k+b0.                                               (30)                
 

Hence, the (z'k, uk) is on MZ, and we say that the z'k is on MZ for simplification. 
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