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Abstract 
 
A confluence of technologies is leading towards revolutionary new interactions between robust data sets, state-of-
the-art models and simulations, high-data-rate sensors, and high-performance computing. Data and data systems 
are central to these new developments in various forms of eScience or grid systems. Space science missions are 
developing multi-spacecraft, distributed, communications- and computation-intensive, adaptive mission 
architectures that will further add to the data avalanche. Fortunately, Knowledge Discovery in Database (KDD) 
tools are rapidly expanding to meet the need for more efficient information extraction and knowledge generation in 
this data-intensive environment. Concurrently, scientific data management is being augmented by content-based 
metadata and semantic services. Archiving, eScience and KDD all require a solid foundation in interoperability and 
systems architecture. These concepts are illustrated through examples of space science data preservation, archiving, 
and access, including application of the ISO-standard Open Archive Information System (OAIS) architecture. 
 
Keywords: Data archives, Distributed data systems, Archiving, active archives, Permanent archives, Data 
standards, Interoperability, Grid systems, Grid computing, Metadata, eScience, Cyberinfrastructure, Virtual 
observatories, Sensor web, Robotic missions, Adaptive design, Knowledge Discovery in Databases (KDD), 
Supervised and unsupervised learning methods, Data mining, Neural networks, Data registries, Ontologies, XML, 
OAIS, CCSDS, ISO, CODATA.  
 
1  Data and Data Systems as Central to Science 
  
A confluence of new technologies (internet, XML and Web Services, broadband networking, high-speed 
computation, distributed Grid computing, ontologies and semantic representation) is dramatically changing the data 
landscape. Distributed data and computing resources are more and more being linked together in virtual 
observatories and grid systems. Focusing only on possibilities emerging from virtual observatories (e.g., NVO, 
2005), however, may distract us from the prime objective - support of science research.  
 
This confluence of new technologies provides a greatly enhanced synergism, illustrated in Figure 1, between robust 
data sets (Data), state-of-the-art models and simulations (Model), high-data-rate sensors (Sensor), and high-
performance computing (HPC). In the late 20th century, a major revolution in chaotic systems and nonlinear 
dynamics arose because of a new coupling of models and high-performance computing. Similarly, we expect that 
the emerging linkage of rich data sets, high-performance computing, models and sensors will lead to even greater 
scientific impact. Data-driven science is already advancing in numerous domains as a separate research discipline 
(e.g., Bioinformatics and Geographic Information Systems) in the same way that computational science has become 
an established research endeavor. 
 
The need for this Data-Model-HPC-Sensor synergism derives from the following set of drivers.  
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PROBLEMS  (all associated with links in Figure 1) 
• Information explosion (Data-HPC) 
• Understanding multiscale physical systems (Data-Model) 
• Solving complex, nonlinear systems (HPC-Model) 
• New high data rate sensors (Sensor-HPC) 
• Distributed, intelligent sensor networks (Sensor-Model) 

There is no single solution for these complex problems but probable contributors to a solution fall within the “Data 
Grid” rubric. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SOLUTIONS   
• Distributed data environments 
• Grid Services (interoperability; semantic web) 
• eScience, virtual observatories, data grids 
• Knowledge discovery, data mining 
• Data archive standards 
• Sensor Web 
• Sensor development 
• Scientific modeling 
• Advanced visualization 

 
Data and data systems are central to this new paradigm as indicated in Figure 1. It is within this context that we can 
best ask about the appropriate relationship and tradeoffs between active and permanent archiving (see Appendix), 
between central and distributed data systems, and how best to coordinate access to rapidly growing science data sets 
and support for eScience and grid systems. The Data-Model-HPC-Sensor tetrahedron can have any vertex placed in 
the center, which symbolizes multiple important perspectives on this synergism; e.g., grid computing emphasizes the 
HPC vertex and Sensor Webs emphasize the Sensor vertex.  

2  Knowledge Discovery in Databases  
An even greater challenge than managing this explosion of data, while the number of scientists remains roughly 
constant, is that of providing efficient harvesting of information and extraction of knowledge within this data 
avalanche. Knowledge Discovery in Databases (KDD) denotes “the nontrivial extraction of implicit, previously 
unknown, and potentially useful information” (Frawley, Piatetsky-Shapior & Matheus, 1991). Within the past 
decade there have been major advances in data mining, neural networks, pattern recognition, clustering, principal 
component analysis, Bayesian networks, Markov models and other tools, which are here referred to collectively as 

 
 
Figure 1. Taking data to knowledge – synergism of Data-Model-HPC-Sensor. 
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KDD tools. KDD is particularly useful for the discovery of hidden relationships in large, complex databases where 
human means of pattern recognition or even model application may fail. In scientific databases, which may contain 
many hundreds of descriptive parameters, the possibility of discovering high-dimensional multi-factor dependencies 
is simply beyond the scope of human and brute-force computational analyses. In many problems, the combinatorial 
explosion (resulting from exponential growth in the number of possible parameter combinations) requires a non-
traditional (i.e., KDD) approach, since computational horsepower alone cannot solve a problem that requires several 
hundred factorial model parameter tests. 
 
Data selection, automating access through registries, translation and formatting, and data cleaning are just a few of 
the many data preparatory steps that are essential for successful KDD applications and which can consume up to 
80% of a data-mining project (Pyle, 1999). With this investment and with sufficiently robust data sets, however, 
previously hidden facts can be discovered such as rare events, anomaly detection, patterns, correlations, linkages, 
complex multi-variable interdependencies and more (Borne, 2003; Bazell, Miller and Borne, 2002). 

 
Figure 2. KDD tools can provide new knowledge of physical relationships. 
 
 
For unprejudiced discovery of associations, connections, linkages, and relationships in data, it is best to use 
Unsupervised Learning methods (see Figure 2). These methods are applied to data parameters to discover new 
relationships and patterns. Such relationships may have complex multi-dimensional interdependencies that are 
beyond the scope of human analysts to discover. Unsupervised Learning methods include various Clustering 
techniques, Association Rule Mining, Link Analysis, PCA (Principal Components Analysis), and Independent 
Component Analysis. Unsupervised Learning is sometimes referred to as "Class Discovery" or "Building the 
Model" (Dunham, 2002). Supervised Learning techniques are applied to new data products to predict an outcome (or 
event) from among a set of possible outcomes (e.g., predicting different Solar energetic particle event classes from 
observed Solar Coronal Mass Ejection (CME) episodes; or predicting different CME event classes from Solar 
surface phenomena). Supervised methods include various Classification techniques – Hidden Markov Modeling, 
Bayesian Networks, Support Vector Machines, Nearest Neighbors, and Neural Networks (Hastie, Tibshirani & 
Friedman, 2001).  Supervised Learning is sometimes referred to as "Applying the Model” (Bazell & Aha, 2001; 
Bazell et al., 2002).  
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The emergence of the International Virtual Observatory Alliance (IVOA) (www.ivoa.net) and many other venues 
for data access (see Appendix) provide important new opportunities for applying KDD tools, which will be powerful 
augmentations (not replacements) to traditional data analysis, modeling and simulation techniques. The application 
of KDD to modeling and simulation data output, in conjunction with sensor and archival data collections, will 
further magnify the significance of the synergies depicted in Figure 1. 
 
3   Data-Intensive Missions and the New Data Environment  
 
Adding to the Data Avalanche: For certain robotics science missions, the traditional single-spacecraft is being 
replaced by multi-spacecraft, distributed, communications- and computation-intensive, adaptive mission 
architectures termed “Sensor Webs” (NASA/JPL Sensor Webs Project, n.d.). The traditional “stove-piped” approach 
tends to be a mere platform for an aggregate of independent instruments, and such missions are vulnerable to single-
point failure modes. A Sensor Web architecture, by contrast, is an intrinsically adaptive design: “its constituent 
sensor, computing, and storage nodes coordinate, dynamically modify, and adapt their measurement modes, 
observing strategies, and processing states, to intelligently collect, exchange, and synthesize sensor data and other 
information in ways that tend to maximize useful science return” (Higgins, Kalb, Lutz, Mahoney, Mauk, Seablom & 
Talabac, 2003). This architecture can contribute to reductions in mission failure modes through optimal resource 
sharing among its nodes as depicted in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Sensor Web: Sensor, computing, and information storage nodes (provided by Stephen Talabac, NASA/GSFC). 
 
The Sensor Web concept emerged recently in Earth science planning activities where mission success requires 
multi-point remote-sensing space observation combined with coordinated, distributed ground-based in situ sensor 
networks. Concurrently, plans for spacecraft constellations in space physics have led to similar adaptive mission 
architectures (Solar Terrestrial Probes Program, n.d.). Combining sensor web concepts with new robotics and 
nanotechnology are leading to revolutionary new concepts for robotics missions (Autonomous NanoTechnology 
Swarm, n.d.). At the same time, multi-point sensor web systems and high-speed data sensors will be adding even 
further to the forthcoming data avalanche. 
Towards a More Distributed Data Environment: Centralized data environments and data centers were dominant 
prior to the internet revolution. This provided more control over computer and support systems that were often not 
interoperable and had (without contemporary middleware) many hardware-level dependencies. Overcoming such 
limitations has greatly enhanced the power of data centers; however, such centers would be crippled without 
efficient access to off-site data resources. The other extreme in data architecture is that of radically distributed data 
sites with no centralized or primary nodes. This architecture is exemplified by wide-open aspects of the web with 
Google searches in place of any systematic index or catalogue. However, lack of any center would undercut efforts 
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towards interoperability, data preservation, or systematic data archiving. In addition, with emerging peta-scale 
datasets, “the datasets are so large, and the application programs are so complex, that it is much more economical to 
move the end-user’s programs to the data and only communicate questions and answers rather than moving the 
source data and its applications to the user’s local system (Gray, Liu, Nieto-Santisteban, Szalay, DeWitt & Heber, 
2005). 
 
Given the many drivers and constraints on data and data systems, the emerging data environment at NASA 
illustrates a hybrid model, or middle-ground balance between the above centralized and radically distributed 
scenarios for data handling. Similar to the evolving data environment for most scientific fields, science data 
preservation and access at NASA includes a complex mix of data sources at multiple levels with multiple, 
distributed active archives providing the highest level of user access support. And, for space science, a single 
permanent archive providing long-term preservation and back-up functions for the overall science data system (see 
Appendix). The rising ubiquity of computers and internet access has fundamentally changed data environments and 
the roles of data centers. For example, off-line requests to our data center have declined to less than one per day 
whereas on-line data served (now ~3 Tb per year for the Space Physics Data Facility) has steadily increased.  
 
A panoply of such changes has led to a much more distributed data environment, but one that retains centralized 
features: 
 • Distributed, on-line, multi-source/media/format 

 • Web-based, machine/application-accessible data archives 

 • On-line registries of products and services 

 • Front-end applications and brokers to connect archives to front ends 

 • Diverse metadata, emerging standards and ontologies 

 • High-order search capabilities 

 • Data mining and other knowledge discovery tools 

 • Grid computing and broad-band networking 

 • Centralized data center for long-term data preservation; back-up to active archives 

 • Major active archives for user-oriented services and data access within major disciplines  

Examples: Planetary Data System  http://pds.nasa.gov 
Global Change Master Directory  http://gcmd.gsfc.nasa.gov/  

 
Need for Reliable Foundations: All these wonderful new possibilities for future science may be like an elegant 
mansion at a cliff-side location. While at first admiring its magnificent construction, one is suddenly struck by a 
gash of erosion cutting into the cliff, which reaches the building’s foundations and will soon plunge the mansion into 
the sea. 
 
The beautiful mansion of our dreams - virtual observatories, distributed, yet fully accessible data sets, sensor webs, 
etc. – is similar threatened by the erosion of business as usual and everyone holding on to “my” data. The simple 
answer is to move towards open data environments – but how? What is needed is to ensure a solid foundation for 
future missions and science in open, distributed data environments. Key solutions are “interoperability” and 
“architecture.” 
 
Just as the current internet would lack a foundation without basic protocols and standards, the emerging distributed 
data systems require even greater attention than before to interoperability and architecture issues. Given its 
international framework within the International Council of Scientific Unions (ICSU), combined with many 
institutions having strong data, data systems, and data archiving infrastructure, CODATA and its partners are 
uniquely positioned to provide leadership in these efforts for all science needs. 
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4   Foundations – Interoperability and Systems Architecture 
 
Data systems are comprised of four basic elements: data, metadata, software, and systems. Not including the data 
itself, “metadata” refers to all data about data, comprises location, ownership, and attributes, including bit 
representation, data format, and cataloging information. “Software” here refers to middleware, data analysis and 
modeling software. “Middleware” denotes software that mediates between application programs and the network; a 
principal example being “Web Services.” And “systems” refer to the combinations of hardware and software that 
embody the architecture, data, metadata, and software that constitutes the overall data system. 
 
Enhanced interoperability and systems architecture, based on best practices and standards, are key goals for the 
continuing improvement of data and data systems in our present transitional period from legacy analog data systems 
to hybrid or born-digital systems. Substantial investments are now going into new eScience,† VxO, grid computing 
and grid systems generally. Major monographs on these topics emphasize the foundational importance of 
interoperability and systems architecture (Foster & Kesselman, 2004; Berman, Fox & Hey, 2003; NSF, 2003). 
 
For space science data and communications, the principal standards body is the Consultative Committee for Space 
Data Systems (CCSDS) http://www.ccsds.org/.  For example, the key architectural document for data systems, a 
reference model standard for Open Archival Information Systems (OAIS) concepts, was developed through CCSDS 
and is now an adopted standard with the International Organization for Standardization (ISO) http://www.iso.org. It 
should not be forgotten that if standards had not developed for file transfer protocol (FTP) and other foundational 
elements of the internet, we would still be communicating by “snail” mail. A guide to work done in digital archive 
preservation through CCSDS/ISO is provided at http://nssdc.gsfc.nasa.gov/nost/isoas/. The OAIS reference model 
has been widely adopted as a key framework in the discussion and implementation of digital preservation and 
management systems (Anderson, 2004). 
 
The OAIS framework outlines three key roles (producer, consumer, management) and six functional entities: ingest, 
archival storage, data management, access, administration, and preservation planning. Relationships among the first 
four, which are the major operational functions, are depicted in Figure 4. Also shown are uses of the concept of 
“information packages” that come in three types (submission, archive, dissemination). 
 
An information package is a conceptual container that includes content information and preservation description 
information. Although complex in full description, the OAIS conceptual framework can be taken as “best practice” 
guidelines that are essentially simple and logical. The information package concept is fully flexible and allows for a 
mix of born-digital, analog or physical data entities, including laboratory specimens of whatever form.  
 
The National Space Science Data Center (NSSDC) has implemented several OAIS concepts in its latest version of 
software and system architecture, albeit with some stray legacy functions at the fringes. A concrete implementation 
of an Archival Information Package (AIP) was developed as a single file; however, it contains multiple metadata 
and data objects originally existing as individual files. This has provided the flexibility to capture attributes about 
each file and about the collection of files as a group in a form that is easily migrated across media and systems while 
retaining sufficient content to be a useful unit. It employs embedded standards-based pointers to refer to external 
metadata, such as format information, that is common across many files. In this way, updates to the common 
metadata can be made without having to retrieve and update very large numbers of AIPs, while attributes closely 
associated with individual files, like original file names, file sizes, checksums on each file, etc., are kept with file 
objects in the AIP. Experience has shown that it is also useful to separately capture metadata attributes within each 
AIP for storage in a database so that they can be readily searched if data quality or related issues arise. This follows 
in the NSSDC case as there are over a million AIPs now stored on robotic super-digital linear tapes (DLTs), and 
scanning these to extract attribute values would be very time consuming. 
 
Another key feature of the OAIS that is being incorporated into NSSDC architecture is the clear separation of the 
Archival Storage function from other functions. AIP implementation has facilitated this, as now Archival Storage 
can concentrate on preserving AIPs and “pointed to” metadata, without being concerned about how AIPs are created 

                                                 
† We use eScience here to refer broadly to all grid system, virtual observatories (VxO), and related distributed 
scientific collaborations enabled by the Internet; one example is the UK e-Science Centre http://www.nesc.ac.uk/. 
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or how they are disseminated to end users. This provides a strong preservation focus and helps the staff to focus on 
what is actually being preserved, thus improving quality control. For example, new efforts are being made to capture 
provenance information associated with a migration that is moving older data into AIPs, with the result that when 
problems arise they can be easily documented and associated with the AIPs for greater data reliability and 
understanding. 

Figure 4.  Open Archival Information Systems (OAIS) architecture as adopted by NSSDC. 
 
The longevity of the NSSDC as a digital archive, being some 40 years in operation, has provided an opportunity to 
see first-hand a number of issues associated with long-term preservation and the role of migration in this 
preservation effort. For the current, or third major, migration that is moving 9-track and 3480 cartridge data to 
DLTs, a significant effort is being made to highly automate the process by creating a database at the core of the 
migration management. This effort is impeded by the lack of consistency and completeness in related operational 
databases, which is being overcome by manual checking with updates to the core database. Lessons learned include 
the need for thorough, documented, reviewed, and updated plans. It is easy for an organization to succumb to cost 
pressures and to cut corners. While taking shortcuts may look cost-effective, it turns out to be more costly in the 
long run. Another lesson learned is to use automation wherever and whenever possible. This reduces human 
mistakes and workloads, and provides a more consistent result.  
 
We have found that architecture and interoperability work hand-in-hand; shortcuts in one of these will undercut 
efforts in the other. As with so much in life – (poor) good planning has its (penalties) rewards. To augment the OAIS 
effort, the standards team and CCSDS have fashioned and submitted to ISO a new proposed standard for the 
producer-archive interface, which helps to define data provider-to-archive relationships, such as agreements, 
standards, and quality assurance (CCSDS, 2003). They are also working on a draft standard called XFDU that uses 
XML as the basis of a manifest document within a general data packaging scheme.  This has wide applicability as a 
general container for exchanging data, metadata, and their relationships, and is an obvious candidate as the basis for 
future AIP implementations. 
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The relationship of archives to research and missions is illustrated in Figure 5, which places data standards 
technology and related interoperability needs at the intersection of all three circles (permanent archive, active 
archives, missions). Paired intersections of these three point to principal functions of data and data systems in 
support of science (planning, preservation, and data analysis or research). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Data and data systems as central to science. 
 
 
6 Conclusion  
 
The basic question that motivates new eScience initiatives is not about the preferred grid model or some tradeoff 
between distributed and centralized resources. Instead, the basic question is how best to support science endeavors 
in this new era of Knowledge Discover in Databases (KDD) and an enhanced synergism of Data-Model-HPC-
Sensor within which we consider new eScience and grid systems, followed by analysis and modeling (boosted with 
KDD tools) to create the new knowledge that we seek. Critical to this support is the development of the core 
infrastructure (interoperability, architecture) that makes this new synergism possible, which includes stable and 
extensive archives covering all scientific fields with continued work in standards and interoperability issues, and 
cross-discipline tools that support distributed data systems.  
 
Well-managed archives, eScience or VxO systems, and vigorous application of new KDD tools promise to be 
central to many, if not most, major science and technology advances in the coming century.   
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9  Appendix. Science Data Preservation and Access at NASA   
 
Space physics and Earth science data systems at NASA’s Goddard Space Flight Center manage data from a wide 
variety of science missions. Long-term data archiving is provided by the NSSDC, which is NASA’s permanent 
archive for space science (http://nssdc.gsfc.nasa.gov). Permanent archiving of land remote sensing data is managed 
by the U.S. Geological Survey (USGS) (http://edc.usgs.gov/index.html) and, recently on an interagency basis for 
Earth systems data more generally, by NOAA’s National Environmental Satellite, Data, and Information Service 
(NESDIS) (http://www.nesdis.noaa.gov/datainfo.html). The archival storage focus of permanent archives includes 
data ingest (primarily from active archives), administration, data and metadata management, preservation planning, 
and data dissemination (principally as a supplement to active archives – otherwise they function as an active 
archive). Permanent archives are concerned with the long-term independent meaningfulness and usability of data, 
which requires special attention to data migration, metadata, and standards issues.    
 
Active archives provide more immediate, short-term or real-time data access. Data ingest, management, storage, and 
access functions are common to both active and permanent archives (NSSDC, 2004). Data ingest is primarily from 
original data providers (missions and principal investigators (PIs)) but may include data from other active archives. 
The data access focus of active archives stresses interoperability, value-added services, and data dissemination, but 
they may also need to perform migrations.  
 
Ideally, permanent archives communicate with active archives, and active archives communicate both with the 
permanent archive, original data providers, and the scientists, educators and others who are end users of the data. 
Examples of active archives in space science are the Planetary Data System (PDS) (http://pds.nasa.gov) and the 
Space Physics Data Facility (SPDF) http://spdf.gsfc.nasa.gov. One overview of space science data systems is 
available at http://nssdc.gsfc.nasa.gov/nssdc/obtaining_data.html. For Earth science missions, a more integrated 
view is provided by the Global Change Master Directory http://gcmd.gsfc.nasa.gov/.   
 
Numerous Project, Mission and PI web sites provide access to current data, some of which are not yet available from 
a centralized active archive; an example is the Polar/TIDE experiment site (http://satyr.msfc.nasa.gov/TIDE/). The 
simple “permanent archive – active archive – user” framework described above is augmented by a rapidly growing 
set of distributed systems functioning as virtual active archives or collaboratories (NSF, 2003; NRC, 1993). These 
virtual observatories are most often vertically integrated within a particular discipline (e.g., International Virtual 
Observatory Alliance http://www.ivoa.net/ - astrophysics focus). Numerous VxO systems are emerging in space 
science, Earth systems science and other fields (e.g., the Earth Observing System Clearinghouse (ECHO) system; 
and the NOAA Comprehensive Large Array-data Stewardship (CLASS) system). 
 
While distributed active archives can serve as the operational front line for scientific data access for most, if not all, 
scientific disciplines, this access is typically managed in discipline-specific ways as illustrated by most active 
archives and virtual observatories. In some cases, a major data center has been delegated a broader purview. For 
example, NSSDC is the designated permanent archives for all NASA space science disciplines. It carries out this 
responsibility with close attention to international data archiving standards and methodology to insure indefinite 
access and independent, well-documented usage of these data. In addition to providing leadership in data systems 
standards and interoperability, the NSSDC and its partners within NASA and in the science community have 
provided a clearinghouse role across all space science disciplines for research tools, models, and grid computing. 
 
 


