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ABSTRACT  
 
In Inertial Navigation Systems (INS), the attitude estimated from gyro measurements by the Kalman filter is 
subject to an unbound error growth during the stand-alone mode, especially for land vehicle applications 
using low-cost sensors. To improve the attitude estimation of a land vehicle, this paper applies a fuzzy 
expert system to assist in multi-sensor data fusion from MEMS accelerometers, MEMS gyroscopes and a 
digital compass based on their complementary motion detection characteristics. Field test results have 
shown that drift-free and smooth attitude estimation can be achieved and will lead to a significant 
performance improvement for velocity and position estimation. 
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1. INTRODUCTION  
 
Global Positioning Systems (GPS) have found wide applications in land vehicle navigation for its cost-
effectiveness and long-term accuracy (Parkinson & Spilker, 1996). But its reliability and availability will 
be significantly degraded in the presence of signal blockages, interference and multipaths, especially in 
urban area. A popular solution to this problem is the integration of GPS and INS to take advantage of their 
complementary characteristics. For land vehicle navigation, the INS sensors are low-cost and small size 
MEMS-based inertial sensors whose instrument bias, drift and noise are significant.  
 
Based on INS mechanization, the error in velocity and position estimation will mainly be governed by the 
accuracy of the estimated attitude (Titterton & Weston, 1997). In traditional approaches, only gyroscopes 
are used for attitude determination and the attitude errors are compensated for by the Kalman filter. Since 
Kalman filter is model-dependent, the system model parameters need to be precisely known a priori 
(Brown & Hwang, 1997). For low-cost MEMS sensors, precise knowledge (or modeling) of their 
significant instrument bias, drift and noise is very difficult in practical applications and subsequently this 
will affect the performance of the Kalman filter for attitude estimation. In particular, with only low-cost 
gyroscopes, the Kalman filter estimation errors will accumulate over time when there are no measurement 
updates, resulting in unreliable attitude solutions over a long prediction period (Brown & Lu, 2004).  
 
In this paper, three types of low-cost sensors, namely MEMS accelerometers, MEMS gyroscopes and a 
magnetometer, are investigated for attitude estimation. A magnetometer with complementary 
characteristics to a gyroscope can provide absolute heading information relative to the magnetic north 
without time-accumulated errors. For tilt sensing, when a vehicle is static, only the accelerometer 
measurement that contains the gravity field can directly derive pitch and roll angles without time-
accumulated errors. Since the physical characteristics of each sensor are related to vehicle dynamics, a 
fuzzy expert system is designed to identify the vehicle’s motion. Once the motion type of the vehicle is 
identified, the most suitable sensor can be used to improve attitude estimation and to control the estimation 
error. Field tests using a van driven on a road were performed to examine the attitude accuracy estimated 
by the proposed system. The test results have shown that the proposed system can bound the attitude errors 
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and reduce the error growth if vehicle stop is available. The performance improvement in velocity and 
position determination using the fused attitude is also discussed. 
 
2. ATTITUDE ESTIMATION BY MULTI-SENSORS 
 
The principle of inertial navigation is to derive the attitude, velocity and position of a moving body by 
measuring its dynamics based on Newton’s Law. To sense the dynamics of the vehicle, the INS is aligned 
with the body frame consisting of three orthogonal axes where x is in the direction of forward motion of the 
vehicle, z is in the down direction, and y is in the direction of transverse motion of the vehicle, 
perpendicular to the plane formed by x and z axes. In land vehicle navigation, the motion of a vehicle on 
the earth’s surface is mostly represented in the navigation frame whose axes are aligned to the local east 
(e), north (n) and down (d). The transformation between the navigation frame and the body frame can be 
accomplished by a sequence of elementary rotations about the attitude angles. Therefore, the vehicle 
velocity and position in the navigation frame can be obtained when the vehicle attitude and the acceleration 
measured in the body frame are determined. 
 
The attitude of the vehicle is represented by three Euler angles, roll (φ ), pitch (θ ), and yaw (ψ ), which 
are the rotation angles about the x, y and z axes, respectively. The changes of Euler angles, called Euler 
rates, are relative to the rotation rates of the body frame which can be measured by gyroscopes directly in 
the following manner: 
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where Bxω , Byω , and Bzω are angular velocity of the body frame measured by gyroscopes. 
 
The shortcoming of using gyroscopes to estimate attitude is the error accumulation due to the integration 
process. Small gyro biases will result in substantial error growths for unbound attitude. Especially with 
low-cost sensors, the attitude estimation would become unreliable at fast speeds since sensor errors are 
dynamic and difficult to model. 
 
In contrast to gyroscopes, accelerometers can be used to directly derive vehicle pitch and roll angles while 
the vehicle is static or moving linearly at a constant speed. Under this condition the accelerometer output, 
which contains only the local gravity field can be used to determine the vehicle’s pitch and roll angles as 
follows: 
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where BxA and ByA  are the acceleration of the body frame measured by accelerometers and g  is the local 
gravity field. 
 
According to Eqs. (4) and (5), no integration is required and therefore the tilt estimation error will not 
increase with time. The accuracy of the tilt estimation is mainly governed by the accelerometer’s bias. 
Since the accelerometer’s bias can be estimated by stationary leveling and its effect is diminished by the 
gravity field, the accelerometer-based tile estimation is more accurate than gyro-based estimation. Thus, 
accelerometers can be used to bound and reset the tilt information calculated by the gyroscopes when the 
vehicle is static or moving linearly at a constant speed. (Ojeda & Borenstein, 2002). 
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For a vehicle’s heading determination, a magnetometer is able to provide absolute heading information 
relative to the magnetic north without time-accumulated errors (Caruso, 1997). But the compass 
measurements are still subject to the influence of nearby ferrous effects and interference. In land vehicle 
application, the nearby ferrous effects are mainly generated by the vehicle itself. They will remain stable if 
the compass is securely and properly mounted in a vehicle. On the other hand, if the interference is the 
result of magnetic disturbances from such things as DC currents, it will change over time randomly. In 
addition to these environmental magnetic effects, the declination angles must be determined to correct for 
true north. By properly setting up the compass in a land vehicle to minimize the nearby ferrous effects, we 
could approximately model the remained nearby ferrous effects and declination angles as the combination 
of the bias and scale factor error in the heading domain as follows. 
 
 ψψψ ψψψ nˆSbˆ +++=  (6) 
 
where ψ  is the true heading, ψ̂  is the heading provided by magnetometer, ψb  is the sensor bias, ψS  is the 
scale factor, and ψn  is the noise and disturbance. If sufficient measurement and true value data are 
available, the biases and scale factors can be estimated by using the least squares method (Wang, 2004).  
 
It should be noticed that in land vehicle applications the magnetometer is not confined to a level plane most 
often and its tilt angles should be determined for heading corrections (Caruso, 1997). Since the tilt 
information is very difficult to be accurately estimated using low cost sensors when a vehicle is moving, we 
only apply tilt compensation when a vehicle is stationary. Thus, the magnetometer heading will be used to 
bound and reset the heading information calculated by the gyroscopes only when a vehicle is not moving. 
 
Once the vehicle attitude is determined, the vehicle velocity and position in the navigation frame can be 
derived from accelerometer measurements based on the vehicle’s dynamics model. In this paper we have 
applied the constrained motion model proposed by Brandt and Gardner (1998). In normal driving 
condition, the vehicle can be assumed to have no motion along the transverse direction and normal to the 
road surface. The vehicle motion constraints can be applied to simplify the mechanization equations and 
reduce the navigation errors. The constrained motion model is defined as follows (Brandt & Gardner, 
1998): 
 
 θsingAV Bxf −=&  (7) 
 ψθ coscosVx ft =&  (8) 
 ψθ sincosVy ft =&  (9) 
 
where fV  is the vehicle forward velocity. tx and ty are the vehicle coordinates in the XY plane of the 
earth-fixed tangent frame. 
 
Based on Eqs. (7) to (9), the accuracy of the velocity and position solutions are mainly dominated by the 
pitch and heading errors. Thus, in this study we only assess the accuracy of the pitch and heading 
estimation results. 
 
3. A FUZZY EXPERT SYSTEM FOR MULTI-SENSOR DATA FUSION 
 
As mentioned in the previous section, the performance and characteristics of each sensor are related to the 
vehicle’s dynamics. Based on a knowledge of the specific physical shortcomings and strengths of each 
sensor modality under different motion conditions, more accurate attitude estimation can be achieved by 
multi-sensor data fusion. Thus, the association between the raw measurements and the vehicle dynamics 
should be investigated. In this paper, we apply a fuzzy expert system for the identification of vehicle 
dynamics. Once the motion type of the vehicle is identified, the most suitable sensor can be used to 
estimate the vehicle’s attitude. In the meantime, the errors of the unused sensors can also be estimated 
based on the statistical information of the observations. More specifically, we will use accelerometers and 
magnetometers to derive tilt and heading information and estimate gyro drift using the least squares method 
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when a vehicle is static. When a vehicle is moving, we will use the compensated gyro measurements to 
estimate the vehicle’s attitude. The block diagram of our fuzzy expert system is shown in Figure 1. 
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Figure 1. System Block Diagram 
 
To correctly identify vehicle dynamics (static/moving) based on low-cost sensor measurements, the 
identification system must have the capacity of dealing with uncertainty and imprecision due to the noisy 
measurements and vehicle vibration effects. Both probability-based and fuzzy set theory based methods can 
handle the uncertainty and imprecision of data.  However, the failure of the probability-based method in 
situations where little or no a priori information is known provides an arena for the use of a fuzzy expert 
system (Kandel, 1992). A fuzzy expert system is an expert system which incorporates fuzzy sets and/or 
fuzzy logic into its reasoning process and/or knowledge representation scheme. The fuzzy set theory 
provides a natural method for dealing with linguistic term which is a very effective knowledge 
representation format for imprecise and uncertain information (Kandel, 1992). Described in the following is 
the development of a fuzzy expert system for land vehicle dynamics identification. 
 
Shown in Figure 2 is the architecture of the fuzzy logic-based vehicle dynamics identification system. In 
this research, the Mamdani type fuzzy inference system, which is considered as the most commonly seen 
fuzzy methodology, has been used (Mamdani & Assilian, 1975). Defined as the summation of jerk 
magnitude in x, y, and z axes accelerometer data over a specific period, the input variables for the system 
can interpret the degree of vehicle motion. The definition of the input variables is described as follows: 
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where the subscript k  is the present measurement index and the subscript d  indicates the amount of jerk 
magnitude to process.  
 
The purpose of taking the sum of jerk magnitude is to dilute the vibration and noise effect on observations 
and make the difference between stop and move in the accumulated jerk more significant. It should be 
noted that the summation process would result in a delay of information representation. For the output of 
the fuzzy inference system, we define a numeric rating between 0.05 and 0.95 to describe the vehicle 
dynamics grade. A lower rating value indicates a higher likelihood for the vehicle being static.  
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Figure 2: Fuzzy Logic-based Vehicle Dynamics Identification System 
 
Once the inputs and output are defined for the system, the membership functions are further designed to 
define the quantity of the linguistic terms such as stop, uncertainty and move for fuzzy output. In this 
research, the design of the membership functions is based on our personal experience and knowledge 
gained from the field test data. At the same time, a set of rules is developed to describe the relationship 
between the input and the output. The rules established were essentially based on common sense reasoning 
and further modified through processing the field test data. The final tuned membership functions and rules 
are shown in Figure 3 and Table 1. Then, the output fuzzy set is converted into a crisp value using the 
center of the area method. It should be noticed that the fuzzy system design is vehicle dependent and 
sensitive to the location of the sensor installation. 
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Figure 3. Membership Functions used in Fuzzy Expert System 
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Table 1. Rules used in Fuzzy Expert System 
 

StopLowLowLow11

UncertaintyMediumLowLow10

UncertaintyLowMediumLow9

UncertaintyMediumMediumLow8

UncertaintyLowLowMedium7

UncertaintyMediumLowMedium6

UncertaintyLowMediumMedium5

MoveMediumMediumMedium4

MoveHigh3

MoveHigh2

MoveHigh1

Dynamics RatingAJzAJyAJxRule No.

StopLowLowLow11

UncertaintyMediumLowLow10

UncertaintyLowMediumLow9

UncertaintyMediumMediumLow8

UncertaintyLowLowMedium7

UncertaintyMediumLowMedium6

UncertaintyLowMediumMedium5

MoveMediumMediumMedium4

MoveHigh3

MoveHigh2

MoveHigh1

Dynamics RatingAJzAJyAJxRule No.

 
 
The output of the fuzzy inference system represents the degree of motion of a vehicle. To correctly identify 
when a vehicle is at rest or moving based on the fuzzy output values, a set of decision making rules was 
designed as shown in Table 2. The rules 1, 2, and 3 work as a classifier to convert the continuous numeric 
rating values into a Boolean value to identify stopping or movement of a vehicle. Rule 4 is useful for 
instantly detecting the vehicle’s movement and for avoiding the detection delay due to the use of the 
accumulated jerk as our fuzzy input. 
 
Table 2. Rules used for Stop Identification 
 

If the present motion status is stop and the jerk 
magnitude in forward direction is larger than a 
criterion value, Then vehicle is moving.

Rule 4

If Dynamics Rating is larger than 0.05 and smaller 
than 0.95, Then the present motion status follow the 
previous motion status.

Rule 3

If Dynamics Rating equal 0.05, Then vehicle is stop.Rule 2

If Dynamics Rating equal 0.95, Then vehicle is moving.Rule 1

If the present motion status is stop and the jerk 
magnitude in forward direction is larger than a 
criterion value, Then vehicle is moving.

Rule 4

If Dynamics Rating is larger than 0.05 and smaller 
than 0.95, Then the present motion status follow the 
previous motion status.

Rule 3

If Dynamics Rating equal 0.05, Then vehicle is stop.Rule 2

If Dynamics Rating equal 0.95, Then vehicle is moving.Rule 1

 
 
As mentioned previously, we can use the accelerometers and the magnetometers to derive tilt and heading 
information and estimate gyro drift when the vehicle is at rest. Under these conditions, the vehicle’s 
attitude would remain static; therefore, we can average the tilt and heading estimations to remove the noise 
effects. Comparing this static attitude information with the gyro-derived attitude, we can monitor the 
random walk of the gyro measurements and gyro bias effects on attitude estimation. In this research, we use 
least squares method to estimate the gyro noise and bias effects in attitude solutions which are the attitude 
drift error. The role of the least squares estimation is to optimally determine the attitude drift error in a 
statistical sense. The least squares problem can be described by the linear equation shown below. 
 
 AXL =  (13) 
 
The observation, L , is the difference between the gyro-derived attitude at each epoch and its mean value in 
the stop periods. This value indicates the divergence of the gyro-derived attitude at each epoch. The design 
matrix, A , consists of the time difference from rest at each epoch. The unknown parameter, X , is the 
attitude drift error that needs to be estimated. Once the vehicle starts to move, we can use the observation 
and design matrix collected during the stationary periods to estimate the attitude drift error using the least 
squares method. Then, we can remove this drift error from the gyro measurements and perform gyro-based 
attitude estimation based on the Eq. (1) to (3). Because the roll angle is small and the rotation rate in z-axis 
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is much larger than y-axis under general driving conditions, we can ignore the effects of y-axis rotation in 
the roll and yaw computation equation to reduce the errors from noise, vibration, and inaccurate 
measurements. For pitch rate estimation, however, both z-axis and y-axis rotation need to be used because 
the y-axis rotation isn’t diminished by φsin . It should be noted that while the vehicle isn’t making any 
turn, the y-axis accelerometer measurement only contains the gravity field that can be used to derive the 
drift-free roll angle. For roll estimation during cornering, in this research we use the linear interpolation 
between the accelerometer-derived roll angle before and after turning to avoid the drift error caused by 
gyro-based estimation. However, the drawback of this method is the time delay in outputting the tilt 
estimation when the vehicle is cornering. 
 
4. TEST RESULTS AND DISCUSSIONS 
 
We performed several experiments to examine the performance of our proposed system. A low-cost 
MEMS-based inertial sensor, namely MT9 made by Xsens Inc., was used in the experiments. The MT9 is a 
digital inertial measurement unit that measures 3D rate-of-turn, acceleration and earth-magnetic field. The 
data output rate was chosen as 10 Hz. In the meantime, a carrier phase differential GPS (DGPS) solution 
with a data rate of 1 Hz was used to establish a reference for the position, velocity and heading. All of the 
sensors were mounted in a van and their outputs were logged and synchronized with the computer’s timer 
for subsequent analysis. The test was performed in a parking lot at the University of Calgary. The reference 
trajectory provided by DGPS solution is shown in Figure 4. A few vehicle stops occurred during the test 
and the duration of the trip was about 6 minutes.  
 

 
 
Figure 4. Test Trajectory  
 
Figure 5 to 7 show the raw measurements of MT9 including the 3-axis acceleration, angular rate, and 
magnetic field of the body frame. It was shown that the accelerometer and magnetometer measurement are 
quite stable when the vehicle was at rest. The accelerometer measurement profiles also imply the diversity 
of vehicle jerk between rest and movement. For gyro measurements, the vehicle’s rotation dynamics in the 
z-axis is much larger than the noise level. By contrast, the dynamics of pitching and rolling of a land 
vehicle is much lower than yawing while the gyro measurements in x-axis and y-axis are much more noisy 
due to the vehicle’s vibration and road roughness. 
 



Data Science Journal, Volume 4, 28 November 2005 134

 
 
Figure 5. Raw Measurements - Accelerometer 
 

 
 
Figure 6. Raw Measurements - Gyroscope 
 
 

 
 
Figure 7. Raw Measurements - Magnetometer 
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Shown in Figure 8 is the result of vehicle dynamics identification provided by the proposed fuzzy expert 
system. The vehicle’s stopping and movement have been correctly distinguished. The fuzzy expert system 
has properly interpreted the raw measurements and successfully recognized their relationship to the 
vehicle’s dynamics. 
 

 
 
Figure 8. Vehicle Dynamics Identification 
 
Figure 9 illustrates the heading angle derived from only gyro measurements (without aid) and modified by 
the fuzzy expert system, respectively. The reference heading is derived from DGPS velocity while the 
vehicle was in motion. When the vehicle was static, we can adopt the previous reference heading as the 
current reference. Obviously, the gyro drift errors have been controlled by the magnetometer-based heading 
update when the vehicle was at rest. On the other hand, when the vehicle was in motion, a smooth heading 
estimation that cannot be achieved by using a magnetometer because of the noise and tilt effects, has been 
accomplished by using the compensated gyro measurements. 
 

 
 
Figure 9. Heading Estimation 
 
Figure 10 illustrates the pitch angle derived from only gyro measurements (without aid) and modified by 
the fuzzy expert system, respectively. Instead of the unaided pitch estimation with increasing error growth, 
the pitch estimation aided by the fuzzy expert system has been well bound and controlled. Since no 
reference pitch information was available in our test, we evaluated the performance of the pitch estimation 
by examining the velocity estimation calculated by Eq. (7). Figure 11 shows the velocity estimation using 
gyro-based (without aid) and data fusion-based (aid by a fuzzy expert system) pitch information, 
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respectively. Obviously, the gyro-based data diverges quickly and cannot be used for navigation. In 
contrast, the velocity derived from the fuzzy expert system is very close to the reference velocity. Thus, the 
accuracy of the forward velocity estimation has been significantly improved by using the fusion-based 
pitch angle derived from the fuzzy expert system. 

 
 
Figure 10. Pitch Estimation 
 

 
 
Figure 11. Velocity Estimation 
 
To further assess the accuracy of heading, velocity and position solutions, we reduce the 10 Hz inertial 
navigation sampling states to 1 Hz and compare them with the synchronized DGPS data to examine the 
errors. Figure 12 shows the heading, velocity and 2D position estimation errors when we apply the 
proposed multi-sensor data fusion algorithm. Obviously, the heading and velocity errors have been well 
bound and controlled during this about 6-minute driving test (with a couple of stops in-between). In 
statistical analysis the mean and standard deviation (std) values of the heading error are –0.09 and 1.677 
(degree), respectively. The mean and std values of the velocity error are –0.127 and 0.639 (m/s), 
respectively. In terms of the position solutions, the position error would accumulate with time due to the 
integration process. The final position error over this 6-minute stand-alone navigation period is about 50 
meters, which is much better than the specifications supplied by the manufacture. 
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Figure 12. Heading, Velocity and Position Estimation Error 
 
In order to more accurately assess the performance of the proposed system in the position domain, 
additional tests on the same route were repeated. The maximum and root mean square (RMS) values of the 
2D position errors during the moving segment in each test are summarized in Table 3. It can be seen that 
there is a larger position error growth rate in the second segment and a smaller position error growth rate in 
the forth segment. This is because of the many instances of cornering motion (yawing motion) during the 
second segment but none during the forth segment. Based on Eq. (2), a small roll estimation error may 
result in a large error growth of the pitch estimates when yawing motion is significant. The test results also 
demonstrate that even in the same segment a certain variation in system performance exists. This is due to 
the bias variation and the large random walk of a low-cost sensor. In this paper, we applied the least 
squares method to estimate the gyro noise and bias effects in attitude estimation when the vehicle was 
stationary. When the vehicle starts to move, however, the noise is coupled with vibrations and sensor bias 
may change dynamically. Thus, the attitude drift errors may not be removed accurately and will cause 
position errors with different drift rate. In general, the proposed multi-sensor data fusion algorithm can 
provide bounded and smooth attitude estimation and further improve the navigation performance when a 
vehicle stops frequently.  
 
Table 3. Statistical Analysis of 2D Position Error during Motion (a) Test 1 (b) Test 2 (c) Test 3 (d) Test 4 
 

(a) 
 

Periods
(sec.)

2D Position ErrorMoving
Segment

233.025.014

336.6720.053

4921.2334.822

416.239.841

RMS (m)MAX (m)

Periods
(sec.)

2D Position ErrorMoving
Segment

233.025.014

336.6720.053

4921.2334.822

416.239.841

RMS (m)MAX (m)

 
 

(b) 
 

Periods
(sec.)

2D Position ErrorMoving
Segment

243.256.274

334.7811.503

5111.9119.482

446.8416.691

RMS (m)MAX (m)

Periods
(sec.)

2D Position ErrorMoving
Segment

243.256.274

334.7811.503

5111.9119.482

446.8416.691

RMS (m)MAX (m)
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(c) 

 
Periods
(sec.)

2D Position ErrorMoving
Segment

215.028.494

3110.7819.843

4913.1243.402

4212.6819.471

RMS (m)MAX (m)
Periods
(sec.)

2D Position ErrorMoving
Segment

215.028.494

3110.7819.843

4913.1243.402

4212.6819.471

RMS (m)MAX (m)

 
 

(d) 
 

Periods
(sec.)

2D Position ErrorMoving
Segment

153.645.484

2412.7833.853

3625.6445.292

4014.4629.981

RMS (m)MAX (m)

Periods
(sec.)

2D Position ErrorMoving
Segment

153.645.484

2412.7833.853

3625.6445.292

4014.4629.981

RMS (m)MAX (m)

 
 

 
5. CONCLUSIONS 
 
A new multi-sensor data fusion algorithm for land vehicle attitude estimation has been developed with the 
aid of a fuzzy expert system. First, we have investigated in-depth the physical characteristics of each low-
cost sensor and its error sources related to vehicle motion. Then, a fuzzy expert system has been designed 
to correctly identify vehicle dynamics. Finally, based on the identified motion status, sensor error and 
attitude information was estimated by the optimal use of sensor modalities. The estimation in velocity and 
position using the fused attitude was also performed to explore the benefit of the proposed method for land 
vehicle navigation. 
 
The results of the field tests have shown that the proposed method can provide adapted attitude estimation 
without unbound error drift and noisy disturbance. By using this fusion-based attitude, the accuracy of 
velocity and position estimation has been significantly improved. The proposed method can provide a 
desirable land vehicle navigation solution for one minute of stand-alone navigation using a low-cost 
MEMS-based inertial sensor when frequent stops are available. Further research to reduce error drift during 
motion caused by gyro bias variation, the large random walk of gyro measurements and cornering 
dynamics is recommended. 
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