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ABSTRACT 
 

Photometric redshifts have been regarded as efficient and effective measures for studying the statistical 
properties of galaxies and their evolution. In this paper, we introduce SVM_Light, a freely available software 
package using support vector machines (SVM) for photometric redshift estimation. This technique shows its 
superiorities in accuracy and efficiency. It can be applied to huge volumes of datasets, and its efficiency is 
acceptable. When a large representative training set is available, the results of this method are superior to the 
best ones obtained from template fitting. The method is used on a sample of 73,899 galaxies from the Sloan 
Digital Sky Survey Data Release 5. When applied to processed data sets, the RMS error in estimating redshifts is 
less than 0.03. The performances of various kernel functions and different parameter sets have been compared. 
Parameter selection and uniform data have also been discussed. Finally the strengths and weaknesses of the 
approach are summarized. 
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1 INTRODUCTION 
 
With the large and deep sky survey projects being carried out, studying the formation and evolution of galaxies 
has rapidly become a crucial goal of mainstream observational cosmology. In order to achieve this purpose, 
redshift, which is one of the most crucial factors, must be obtained. Most commonly, the redshifts of galaxies 
are determined spectroscopically. However, for those large and faint sets of galaxies, spectra of galaxies are not 
easy to obtain. Rather than observing narrow spectral features of galaxy spectra, the photometric redshift 
technique concentrates on medium- or broad-band color features. Because the photometric redshift measurement 
relies only on colors, the approach can be extended to high redshifts (Stephen, 1995). Moreover, the photometric 
redshift method is also the only way to estimate redshift beyond the spectroscopic limit. The chief disadvantage 
of using photometric redshifts is that they are less precise compared to spectroscopic ones. However, for 
determining properties of large numbers of galaxies in a statistical way, the uncertainty of photometric redshift 
can be tolerated.  
 
Two kinds of photometric redshift methods are available: the template fitting approach and the training set 
approach. In template fitting, according to the known redshift and galaxy type, some templates are constructed 
in advance by minimizing the standard χ2 to fit the observed photometric data with a set of spectral templates. 
No spectroscopic information is required, and this method can be extended beyond the redshift limit. Commonly 
used templates are derived either from real observation, such as CWW (Coleman, Wu, & Weedman, 1980) or 
from population synthesis models (e.g. Bruzual & Charlot, 1993). Although it is easy to implement, the 
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accuracy of this approach strongly depends on the templates.  
The essence of the training set approach is to derive a function between the redshift and photometric data by 
using a large and representative training set of galaxies for which both photometry results and redshifts are 
known and then use this function to estimate the remainder of the galaxies with unknown redshifts. In the past 
few years, a large number of training set methods have been developed and used (Way & Srivastava, 2006). 
Examples include linear or non-linear fitting (Brunner, Connolly, Szalay, Bershady, 1997; Wang, Bahcall, & 
Turner, 1998; Budavari, Szalay, Charlot, Seibert, Wyder, Arnouts, et al. 2005); support vector machines 
(Wadadekar, 2005); artificial neural networks (Firth, Lahav, & Somerville, 2003; Ball, Loveday, Fukugita, 
Nakamura, Okamura, & Brinkman, 2004; Collister & Lahav, 2004; Vanzella, Cristiani, Fontana, Nonino, 
Arnouts, & Giallongo, 2004 ); and nearest neighbors and kd-trees (Csabai, Budavari, Connolly, Szalay, Gyory, 
& Benitez, 2003). 
 
In this paper, we use support vector machines to estimate photometric redshifts using photometric data from the 
Sloan Digital Sky Survey and the Two-Micron All Sky Survey. The outline of the paper is as follows: Section 2 
introduces support vector machines; Section 3 illustrates the data used in the study, and Section 4 describes and 
discusses the results. Our conclusions are summarized in Section 5. 
 

2 SUPPORT VECTOR MACHINES 

Support Vector Machines (SVMs) were developed by Vapnik (1995) and has be applied to solve classification 
and regression problems. The regression problem solution of SVMs is achieved by using an alternative loss 
function, which is modified to include a distance measure. The task of SVMs usually involves training and 
testing sets that consist of data instances. Each instance in the training set contains one “target value” and 
several “attributes.” The goal of SVMs is to produce a model that predicts the target value of data instances in 
the testing set, which are given only the attributes. 
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The resultant optimization problem is 
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To generalize to a non-linear regression, we replace the dot product with a kernel function. More information 
can be found in Steve’s tutorial (1998). 
 
Because of their excellent generalization performance, SVMs have been widely applied in the area of machine 
learning, such as handwritten digit recognition and face detection. In astronomy, SVMs have been applied for 
identifying red variables (Williams, Wozniak, Vestrand, & Gupta, 2004), clustering astronomical objects (Zhang 
& Zhao, 2004), and classifying AGNs from stars and normal galaxies (Zhang, Cui, & Zhao, 2002). 
 
Several software packages of the SVM algorithm are accessible on the web. Regarding its robustness, ability to 
handle large amounts of data, and the regression time, we use SVM_Light in our case study. SVM_Light is a 
fast, optimized SVM algorithm, which is implemented in C language. It can deal with many thousands of 
support vectors, handle hundreds of thousands of training examples, and provide several standard kernel 
functions. The details about SVM_Light can be found at http://www.cs.cornell.edu/People/tj/svm_light/. 
 

3 DATA 
 
The data we used for this paper is from the Sloan Digital Sky Survey (SDSS) and the Two-Micron All Sky 
Survey (2MASS). The general information of SDSS and 2MASS is as follows. 
 

3.1 Sloan Digital Sky Survey 
 
The Sloan Digital Sky Survey (SDSS) (York, Adelman, Anderson, Annis, Bahcall, et al., 2000) is an 
astronomical survey project, which covers more than a quarter of the sky, to construct the first comprehensive 
digital map of the universe in 3D, using a dedicated 2.5-meter telescope located in Apache Point, New Mexico. 
In its first phase of operations, it has imaged 8,000 square degrees in five bandpasses (u, g, r, i, z) and measured 
more than 675,000 galaxies, 90,000 quasars, and 185,000 stars. In its second stage, SDSS will carry out three 
new surveys in different research areas: the nature of the universe, the origin of galaxies and quasars, and the 
formation an evolution of the Milky Way. 
 

 
3.2 Two-Micron All Sky Survey 
 
The Two-Micron All Sky Survey (2MASS) uses two highly-automated 1.3-m telescopes; one is in Mt. Hopkins, 
Arizona, and the other is located in CTIO, Chile. Each telescope has three-channels, which can observe the 
entire sky simultaneously at three near-infrared bands (j, h, and k). Jarrett et al. (2000) has more detailed 
information on the extended source catalog. 
 
We select all galaxies of known redshifts from SDSS Data Release Five, and cross-match the data with 2MASS 
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extended point catalog within a search radius of 3 times the SDSS positional errors. After cross-matching, we 
generate more than 150,000 galaxies. Using these data, we include more restrictions. All data should satisfy the 
following criteria:  
1) The spectroscopic redshift confidence must be equal to or greater than 0.95.  
2) The redshift warning flag is 0.  
3) Each magnitude should be inside its limit magnitude, namely u≤22.0, g≤22.2, r≤22.2, i≤21.3, and z≤20.5. 
 
These qualifications produce a sample of 73899 galaxies. Table 1 shows the broadband filters and their 
wavelength range. 
 
Table 1.  Survey filters and characteristics 

Bandpass   Survey    λeff(Å)  Δλ(Å) 

u       SDSS     3551       600 
g       SDSS     4686       1400 
r    SDSS     6165       1400 
i    SDSS          7481    1500 
z    SDSS     8931          1200 
j    2MASS        12500    1620 
h    2MASS        16500       2510 
k             2MASS        21700       2620 
 
 

4 RESULT AND DISCUSSION 
 
When implementing SVMs, we adopt default soft margin (c) and radial basis function (RBF) kernel, modulate 
the kernel parameter (ϒ) to obtain the optimal result. We randomly divide the sample into two parts: two thirds 
for training and one third for testing. The training set has 50,000 samples and the test set has 23,899 samples. 
The different parameter sets are selected, including model magnitudes (u, g, r, i, z) from SDSS, dereddening 
magnitudes (u’, g’, r’, i’, z’) from SDSS, magnitudes (j, h, k) from 2MASS, and colors composed of these 
magnitudes. Applying the training set to train the SVMs and the test set to test the regression estimator, we 
obtain the performances of various parameter sets. The RMS scatters of photometric redshift are listed in Table 
2. As Table 2 shows, the performance of colors is better than that of magnitudes; the results with input pattern 
based on dereddening magnitudes are superior to those based on model magnitudes; the more parameters used, 
the higher the precision of the redshift estimation. The best RMS error reduces to 0.028. 
 
If using artificial neural networks (ANNs), one should be familiar with the network architecture and make a 
decision about how many input nodes or hidden lays they have. The more complex networks available, the more 
accurate the results will be. However, SVMs may use different kernel functions instead of different ANN 
networks. As long as the appropriate kernel function and parameters are chosen, the RMS scatter will decrease 
significantly. In this study, the Gaussian function is adopted. Moreover, some classic problems, such as 
multi-local minima, curse of dimensionality, and overfitting in ANNs, seldom occur in SVMs. 
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Table 2. Photometric redshift prediction rms errors for different kernel parameters 
Kernel parameter( ϒ)  Input parameters       σ 

0.1     u, g, r, i, z……………………………….    0.0303 
1.1     u-g, g-r, r-i, i-z………………………….    0.0293 
0.35     u-g, g-r, r-i, i-z, z-j, j-h, h-k…………….    0.0286 
0.3     u-g, g-r, r-i, i-z, z-j, j-h, h-k, r…..............    0.0286 
0.3     u’-g’, g’-r’, r’-i’, i’-z’, z’-j, j-h, h-k…….       0.0283 
0.3     u’-g’, g’-r’, r’-i’, i’-z’, z’-j, j-h, h- k, r’…    0.0280 

  
 

5 CONCLUSION 
 
We utilize Support Vector Machines (SVMs) to estimate photometric redshifts using cross-matched data from 
SDSS DR5 and 2MASS. Photometric redshift accuracy produced by SVMs is comparable to that of ANN, as 
good as linear or quadratic regression, and clearly much better than template fitting. In appropriate situations, 
SVMs will be highly competitive tools for determining photometric redshifts in terms of speed and application. 
However, they do depend on the existence of a large and representative training sample. As a part of empirical 
photometric redshift estimations, it is impossible to extrapolate SVMs to a region that is not well sampled by the 
training set. Moreover, a potential solution to the problem of increasing the photometric redshift accuracy is to 
add additional input parameters, such as r-band 50% and 90% petrosian flux radii. This may improve the 
accuracy of redshift estimation about 15% (Wadadekar, 2005). Another approach to the problem is to choose a 
more appropriate kernel function. In the future, we will consider the feature selection/extraction methods in the 
process of parameter selection.  
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