
RESEARCH ON THE REGRESSION ALGORITHM ANALYSIS AND 

ITS APPLICATION  
Shibing Sun1, 2* and Huan Zhao3

 
1 School of Computer and Communication, Hunan University, China 
*2Software Department, Changsha Social Work College, 22 Xiang Zhang Road, Changsha Hunan, China  
Email: sunpine1979@yahoo.com.cn 
3School of Computer and Communication, Hunan University, China 
Email: hzhao@hnu.cn  
 

ABSTRACT 
 

An efficient method is proposed to diagnose a type of abnormal data. We first start with analyzing an example, 
carry through with development of the theory once more, and finally list the method steps and its application 
fields. Experiments show that we need more important and better ways to diagnose abnormal data and eliminate 
them along with the development of information technology and control technology. The quality of measured 
data is improved by the use of this technique. 
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1 INTRODUCTION  

 
The concept of steady estimating (or robust estimators) has a long history. As early as 1960, Tukey emphasized 
the importance of the steady estimating method: "It is an obvious expectation that could not bring on any serious 
consequences for neglecting the deviation of the ideal model, but under the strict model condition, the most 
superior statistical method also could be most superior under the approximate model. Unfortunately this hope is 
often extremely wrong; even some slight deviations also can have a more tremendous influence compared to our 
expectation."（Browne, M.W., & Bansal, P.K. 1998) We can regard the production process as a kind of 
information flow from the viewpoint of information theory and cybernetics. It concomitantly has the technology 
of batch information processing that reflects the state of the art and equipment advances, the mutual function 
and connection of various links, and conceals the regularity of optimal production. Batch data are manifested in 
this information that is the basis of the process control and optimization. However, the deficient erroneous-data 
are frequently derived from the process of data collection and flow, such as the malfunctions of a sensor, a 
switch, or recording instrument, the stochastic nature of the manual recording or bad data input, and so on. 
 
No matter which kind of data we deal with, the data must reflect the reality as far as possible and must be 
accurate, reliable, and unabridged. Suppose we deal with some false data as true data: not only will the 
processing result be insignificant, but also it likely will result in poor decision-making and incorrect control 
based on the false information. Therefore, data must be distinguished principally into true data and false data 
regardless of its processing. The process of distinguishing among data is the error diagnosis and the result data 
are revised. In view of the fact that this domain is receiving more and more attention from theorists and actual 
data producers, this article analyzes the detection of abnormal data, proposes a method of the error data 
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diagnosis (The Steady Return Algorithm), and then introduces its application. 
 

2  THE INTERFERENCE OF ERRONEOUS DATA IN REGRESSION ANALYSIS  
 
Regression analysis is a popular and effective modeling method. Users usually draw a dimensional-dispersion 
pattern to distinguish error values in the cell datum process and then observe under different conditions. This 
method, however, does not work with multi-dimensional data. It has been maintained that the absolute value 
between the forecast value and the actual value (i.e. error) in regression analysis can be distinguished, but this 
conclusion may be unreasonable. Consider the examples in Table 1. 
 
Suppose y and x have a linear relationship. Using the partial least-square return algorithm results in straight line 
L1: 

y=0.06833—0.08146x （See Figure 1）  
 
order 

     
x       y        L1  

    y        r 

     L2    

y           r 
1 —4 2.48 0.39 2.09 2.04 0.44 

 
2 —3 0.73 0.31 0.42 1.06 —0.33 

3 —2 —0.04 0.23 —0.27 0.08 —0.12 

4 —1 —1.44 0.15 —1.59 —0.9 —0.54 

5 0 —1.32 0.07 —1.39 —1.87 0.55 

6 10 0 —0.75 0.75 —11.64 (11.64) 

The surplus standard 
dispersion 1σ =1.55 2σ =0.55 

max| | /r σ  
1.35 1.00 

Table 1. Data sheet: y=0.06833—0.08146x 
For each return value yi and residual error ri row in Table 1, the accurate return surplus dispersion is |rmax|=2.09. 
Because the largest absolute residual error value is σ1=1.55, this result does not surpass the surplus standard 
deviation by more than two fold. Therefore, the result may be regarded as true data without an identified error 
according to the usual conventions. However, if we carefully observe Figure 1 again, we can discover in another 
straight line by excluding the 6th datum. If it is removed, we match a straight line with the other 5 data points 

and then obtain the line L2: y= -1.87333-0.97767x (Figure 1).                                       
Line L2 and line L1 are far from each other; moreover L2 and the overwhelming majority of data points are all 
very close to each other; but the distance between L1 and the majority of points is larger. Thus, we can draw the 
conclusion that the partial least-square return algorithm has two weaknesses:  
First, an individual point may have a significant influence on the result in this data. Participation of the datum in 
the return obviously influences results, in this example, above the 6th data point. 
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Second, it is not possible to discover the error datum with the size of the residual error data.  
 
The unusual 6th point residual error in the above example is quite small (0.75), but the biggest residual error 
(datum 1, ri=2.09) is not the error datum. If an unusual point is suspected because of a large residual error or 
rejection, we will obtain a worse return result compared to L1. Therefore, it is not reliable to judge an unusual 
value by the size of the residual error in the PLS algorithm; such an approach can go astray.  
 
These problems exist mainly because that PLS algorithm minimizes the sum of the residual error. It regards all 
points equally and demands that the straight line approach each point to an extreme. However, when the data has 
an exceptional datum, it cannot obtain the correct regression equation because the PLS algorithm treats the 
unusual datum equally without discrimination. Therefore, when using this kind of the regression equation, the 
residual error is naturally unreliable. In addition, the observed value includes two parts, the independent variable 
x and the dependent variable y, but the residual error is the difference between the component of y and the 
returned value, which does not fully reflect the factor in the component of x. In the next section we will analyze 
this theoretically. 

Figure 1. L1: y=0.06833—0.08146x and L2: y=-1.87333—0.97767x 
 

3  THEORETICAL ANALYSIS OF THE ERROR PROCESS  

Suppose the linear model i i iy x β ε′= + （i=1,2,……n), where ix′ is the transpose of x, ( , )i ix y , are the 

observed data, i mx R∈ , iy R′∈ , 1 2( , ,..., )mβ β β β ′=  are the regression coefficient to be estimated, and 

iε  is the random error, namely 1 2( , ,..., )ny y y y ′= , 1 2( , ,..., ) ( )n ij n mx x x x x ×′= = . Therefore, the result 

returned by the PLS algorithm is 

       1ˆ ( )x x x yβ −′ ′=                                          （1）       

       1ˆˆ ( )y x x x x x y Hyβ −′ ′= = =                               （2） 

L1:y = -0. 0815x + 0. 0683
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L2: y = -0. 977x -  1. 872
    R2 = 0. 9119

Data Science Journal, Volume 6, Supplement, 18 August 2007

S487



      where,  1 1( ) | ( ) | ( )i j n n ij n nH x x x x x x x x h− −
× ×′ ′ ′ ′= = =              （3） 

 

The projection matrix of the x row vector in the line temper spatial, also called the hat matrix, the thL  residual 
error is: 

1

(1 )
n

l l l l ij i ij l ij j
j j l

r y y y h y h y h y
= ±

= − = − = − −∑ ∑                                          

If iy  has an unusual value in the observed value of y, supposing its normal value is *
iy ,  

*
i iy y y= + , the thi residual datum is the following without any errors:  

(1 )i ii i ij j
j i

r h y h y∗ ∗

≠

= − −∑   [ (1 )( )i ii i i ij j
j i

r h y y h y∗

≠

= − + −∑ ]   

Because the error compels the thi residual error to change, therefore (1 )i i ii ir r h y∗− = −  

Therefore, although the error iy  is frequently larger, if iih  is close to 1 ( iih  are the diagonal elements of 

the matrix in the projection matrix, therefore, 0≤ iih ≤1), the difference between the corresponding ir  and ir
∗  

in the normal condition is not large. 
 

Therefore the error in the thi datum cannot be distinguished from the residual error ir , and the change of the 

k(k≠i) residual error resulting from the error iy  is: (1 )k k ki ir r h y∗− = −     (k≠i)   

If kih  is bigger, the error instead is reflected in the thk  residual error. This means that it is unreliable to judge 

the unusual value in the corresponding points from the value size of the residual error r  because the change of 

the residual error depends not only on the component errors of y but also on those of x, ( ijh  is completely 

defined by x).  
 

As shown above, there is a close relationship between the thi  datum and the corresponding ijh . When ijh  is 

larger, this influence is more distinct. ijh  is generally called the leverage point or the latent influence point. 

Usually, an ijh  below 0.2 is regarded as being better, and as much as possible it should be at least below 0.5. In 

the above example, h66=0.936 is extremely close to 1; therefore the return influence is very large, and it strays 
far into the x data. 
 

4  ERROR DIAGNOSIS ALGORITHM  
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If we have an n by m dimension data set 1 2( , ,..., ) ( )n ij n mx x x x x ×′= =  based on above discussion and 

analysis, we can carry out the following algorithm steps to diagnose the unusual data:  
 
Step 1: Calculate x x′  

Step 2: Compute x x′  inverse matrix 1( )x x −′        

Step 3: Confirm the threshold value F（0<F<1）to eliminate unusual values   

Step 4: Compute 1( )i i ia x x x x−′ ′=   i=1,2,…,n  

Step 5: If there is an identical parent component in the new data set Z, then we calculate 1( )a z x x z−′ ′= , 

distinguish Z in contrast to the unusual datum and the normal datum with the Step 4. 
 
In order to enhance the precision of the operation, we can standardize the primitive data set X and then carry on.  
     

   5  POSSIBLE APPLICATIONS FOR THE APPROACH 
 
First, the solution in section 4 can be used to identify and reject unusual data in order to enhance the reliability, 
usefulness, and validity of the data.  
 
Second, it can be used in breakdown diagnosis. If the signal examination method is good, we can gather the 

normal and unusual data for some application (i.e. industry control), confirm the ia  sector corresponding with 

the breakdown through the use of the previous algorithm, and then store 1( )x x −′ . Using an online examination 

data as Z, we calculate 1( )a z x x z−′ ′= , finally ascertaining the degree of the breakdown according to size, 

which can then implement online, real-time quantitative analysis and a breakdown alarm of equipment 
performance. 
 
Third, it can be used for planning and statistical management (Hur, Lee, & Baek, 2006; Liu, Wang, Su, & Tao, 
2003). The project management, statistical report forms, and decision-making in a factory all depend on their 
access to needed data and their quality. However, these all have random error data, which can cause the 
administrators to miss the real efficiency of a factory. They can obtain reliable data with the observed values 
from data diagnosis and adjustment in the current capacity and other parameters (Browne& Bansal, 1998; 
Carrasco, 1998; Yuan & Li, 2004).  
 
Fourth, it can be used in process signal tracing. Process data can be analyzed online using diagnostic and 
adjustment technology, equipment and work status of an instrument, which can be tracked and analyzed. 
Mistakes and malfunctions can be identified.  
 
Fifth, it can be used in process control and optimization (Laursen & Stanciulescu, 2006; Yuan & Li, 2004). The 
combination of a flow simulator, optimizing algorithm, and diagnosis adjustment software can provide a reliable 
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process optimization plan. We can automatically and in real-time deposit and withdraw process data with 
diagnostic adjustment software and calculate time averages and adjustments to obtain uniform process data. 
Also we can input the adjusted data into a flow simulator to unify the most recent economic data on the 
operation in order to simulate and optimize process operation parameters to achieve the most economic value. 
Optimized processing parameter values are then available for new set-points process control. This is the online 
feedback control system. Optimization may be off-line or online and may also form an online closed-loop 
system with the optimizer and the control system linked together. 
 
6  CONCLUSION 
 
This article proposes an effective solution for diagnosing abnormal or unusual data. It begins with an example of 
actual data analysis, presents the theoretical inferential reasoning, and finally lists the algorithm steps and 
application domains of this method. As we know, diagnosis and resolving of unusual data, which can effectively 
enhance the quality of data by means of data adjustment technology, has become more important and urgent 
with the development of information technology and the control technology.    
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