
AN ASSOCIATION RULE MINING ALGORITHM BASED ON A

BOOLEAN MATRIX

Hanbing Liu1* and Baisheng Wang2

*1Department of Information & Electrical Engineering, Hebei University of Engineering, 056038 Handan
Hebei, China
Email: hbliu_2004@126.com
2Department of Information & Electric Engineering, Hebei University of Engineering, 056038 Handan Hebei,
China
Email: bswang45@yahoo.com.cn

ABSTRACT

Association rule mining is a very important research topic in the field of data mining. Discovering frequent
itemsets is the key process in association rule mining. Traditional association rule algorithms adopt an iterative
method to discovery, which requires very large calculations and a complicated transaction process. Because of
this, a new association rule algorithm called ABBM is proposed in this paper. This new algorithm adopts a
Boolean vector “relational calculus” method to discovering frequent itemsets. Experimental results show that
this algorithm can quickly discover frequent itemsets and effectively mine potential association rules.

Keywords: Data mining, Association rule, Frequent itemsets, Boolean matrix, Relational calculus

1 INTRODUCTION

Data mining is the key step in the knowledge discovery process, and association rule mining is a very important
research topic in the data mining field (Agrawal, Imielinski, & Swami, 1993). The original problem addressed
by association rule mining was to find a correlation among sales of different products from the analysis of a
large set of supermarket data. At present, research work on association rules is motivated by an extensive range
of application areas, such as banking, manufacturing, health care, and telecommunications. The discovery of
association rules is typically done in two steps: discovery of frequent itemsets and the generation of association
rules. The second step is rather straightforward, and the first step dominates the processing time, so we
explicitly focus this paper on the first step.

A number of efficient association rule mining algorithms have been proposed in the last few years. Among these,
the Apriori algorithm (Agrawal & Srikant, 1994) has been very influential. Since its inception, many scholars
have improved and optimized the Apriori algorithm and have presented new Apriori-like algorithms,
Klemetinen, Mannila, & Ronkainen (1994), Park, Chen, & Yu (1995), Toivonen (1996), Kotásek & Zendulka
(2000), and Han, Pei, & Yin (2000). The Apriori-like algorithms adopt an iterative method to discover frequent
itemsets. The algorithm starts from frequent 1-itemsets until all maximum frequent itemsets are discovered. The
Apriori-like algorithms consist of two major procedures: the join procedure and the prune procedure. The join
procedure combines two frequent k-itemsets, which have the same (k-1)-prefix, to generate a (k+1)-itemset as a
new preliminary candidate. Following the join procedure, the prune procedure is used to remove from the
preliminary candidate set all itemsets whose k-subset is not a frequent itemset. A huge calculation and a
complicated transaction process are required during the two procedures. Therefore, the mining efficiency of the
Apriori-like algorithms is very unsatisfactory when transaction database is very large.

In this paper, a new algorithm called ABBM is proposed. This algorithm transforms a transaction database into a

Data Science Journal, Volume 6, Supplement, 9 September 2007

S559

Boolean matrix stored in bits. Meanwhile it uses the Boolean vector “relational calculus” method to discover
frequent itemsets. We use the fast and simple “and calculus’’ in the Boolean matrix to replace the calculations
and complicated transactions that deal with large numbers of itemsets. Experimental results show that this
algorithm is more effective than the Apriori-like algorithms.

2 AN ALGORITHM BASED ON BOOLEAN MATRIX (ABBM)

In this section, we propose a new association algorithm. The section is organized as follows: the correlative
definition and proposition, an introduction to the ABBM algorithm details, and a description of a sample
execution of the ABBM algorithm.

2.1 Definition and proposition

Definition 1: Let I= {i1,i2,…,in} be a set of literals, called items. Let D be an attribute and Dom(D) be the
domain of D. A transaction database is a database containing transactions in the form of (d, E), where
d∈Dom(D) and E⊆ I.

Definition 2: Let D be a transaction database, m be the number of transactions in D, and minsup be the
minimum support of D. The minimum support number minsupth is defined below:

minsupth = minsup×m.

Definition 3: The Boolean matrix is a matrix with element values of ‘1’ or ‘0.’

Definition 4: The Boolean ‘and calculus’ is carried out to an arbitrary k columns vector of the Boolean matrix;
the sum of ‘1’ of the operation result is called k- support of the k columns vector.

Proposition 1: If the sum of ‘1’ in a row vector Ai is smaller than k, it is not necessary for Ai attending calculus
of the k- supports.

Rationale: According to the principle of the Boolean ‘and calculus,’ the result is ‘1’ when the value of all
vector elements is ‘1.’ If the sum of ‘1’ in a row vector Ai is smaller than k, there is at least one ‘0’ element
in Ai,.

Proposition 2: Itemset X is a k-itemsets; |LK-1(j)| presents the number of items ‘j’ in all frequent (k-1)-itemsets
of the frequent set LK-1. There is an item j in X. If |LK-1(j)| is smaller than k-1, itemset X is not a frequent itemset
(Xu & Zhang, 2003).

Proposition 3: |LK| presents the number of k-itemsets in the frequent set LK. If |LK| is smaller then k+1, the
maximum length frequent itemsets is k.

 Rationale: Frequent (k+1)-itemsets X have k+1 frequent k-subsets. If the number of frequent k-itemsets in the
 frequent set LK is smaller than k+1, there are no frequent (k+1)-itemsets in the mined transaction database.

2.2 Algorithm Details

In this section, we will first present the ABBM algorithm step by step. In general, the ABBM algorithm consists
of four phases as follows:

1. Transforming the transaction database into the Boolean matrix
2. Generating the set of frequent 1-itemsets L1
3. Pruning the Boolean matrix
4. Generating the set of frequent k-itemsets Lk(k>1)

Data Science Journal, Volume 6, Supplement, 9 September 2007

S560

The detailed method, phase by phase, is presented below.

2.2.1 Transforming the transaction database into the Boolean matrix

The mined transaction database is D, with D having m transactions and n items. Let T={T1,T2,…,Tm} be the set
of transactions and I={I1,I2,…,In}be the set of items. We set up a Boolean matrix Am*n, which has m rows and n
columns. Scanning the transaction database D, if item Ij is in transaction Ti , where 1≤j≤n,1≤i≤m, the element
value of Aij is ‘1,’ otherwise the value of Aij is ‘0.’

2.2.2 Generating the set of frequent 1-itemset L1

The Boolean matrix Am*n is scanned and support numbers of all items are computed. The support number
Ij.supth of item Ij is the number of ‘1s’ in the jth column of the Boolean matrix Am*n. If Ij.supth is smaller than
the minimum support number minsupth, itemset {Ij} is not a frequent 1-itemset and the jth column of the
Boolean matrix Am*n will be deleted from Am*n. Otherwise itemset {Ij} is the frequent 1-itemset and is added to
the set of frequent 1-itemset L1 .

The sum of the element values of each row is recomputed, and according to Proposition 1, the rows whose sum
of element values is smaller than 2 are deleted from this matrix.

2.2.3 Pruning the Boolean matrix

Pruning the Boolean matrix means deleting some rows and columns from it. First, the column of the Boolean
matrix is pruned according to Proposition 2. This is described in detail as: Let I′ be the set of all items in the
frequent set LK-1, where k>2. Compute all |LK-1(j)| where j∈I′, and delete the column of correspondence item j if
|LK-1(j)| is smaller than k-1. Second, recompute the sum of the element values in each row in the Boolean matrix.
According to Proposition 1, the rows of the Boolean matrix whose sum of element values is smaller than k are
deleted from this matrix.

2.2.4 Generating the set of frequent k-itemsets Lk

Frequent k-itemsets are discovered only by “and” relational calculus, which is carried out for the k-vectors

combination. If the Boolean matrix Ap*q has q columns where 2<q≤n and minsupth≤p≤m, k
qc , combinations of

k-vectors will be produced. The ‘and’ relational calculus is for each combination of k-vectors. If the sum of
element values in the “and” calculation result is not smaller than the minimum support number minsupth, the
k-itemsets corresponding to this combination of k-vectors are the frequent k-itemsets and are added to the set of
frequent k-itemsets Lk.

A detailed description of the ABBM algorithm is given in Figure1.

Data Science Journal, Volume 6, Supplement, 9 September 2007

S561

Figure 1. ABBM Algorithm

2.3 Example

This section describes a sample execution of the ABBM algorithm. The transaction data of the transaction
database D are given in Table 1; the minimum support is 0.4; n=5 is the number of items, and m=5 is the
number of transactions. Therefore, the minimum support number minsupsh=2.

The transaction database D is transformed into the Boolean matrix A5*5:

Table 1. Transaction data of the transaction database D

TID Itemsets
T1
T2
T3
T4
T5

I1,I4
I2,I3,I5

I1,I2,I3,I5
I2,I5

I1,I2,I3

Figure 2. The Boolean matrix A5*5

Data Science Journal, Volume 6, Supplement, 9 September 2007

S562

We compute the sum of the element values of each column in the Boolean matrix A5*5 and the set of frequent
1-itemset is:

L1= {{I1},{I2},{I3},{I4}}

The fourth column of the Boolean matrix A5*5 is deleted because the support number of item I4 is smaller than
the minimum support number 2. We then compute the sum of the element values of each row in the Boolean
matrix and delete all rows where the sum of the element values is smaller than 2. Finally, the Boolean matrix
A4*4 is generated.

Figure 3. The Boolean matrix A4*4

The operation of 2-supports is executed for the all columns of the Boolean matrix A4*4, and the set of frequent
2-itemset is:

L2={{I1,I2},{I1,I3},{I2,I3},{I2,I5},{I3,I5}}

In pruning the Boolean matrix A4*4 by the set of frequent 2-itemsets L2 , the third row of the Boolean matrix A4*4

is deleted because sum of its element values is smaller than 3. Finally, the Boolean matrix A3*4 is generated.

Figure 4. The Boolean matrix A3*4

The operation of 3-supports is executed for all columns of the Boolean matrix A3*4, and the set of frequent
3-itemset is:

L3= {{I1,I2,I3},{I2,I3,I5}}

According to Proposition 3, the ABBM algorithm is terminated because there are two frequent 3-itemsets in the
set of frequent 3-itemset L3.

3 EXPERIMENT

In order to appraise the performance of the ABBM algorithm, we conducted an experiment using the Apriori
algorithm and the ABBM algorithm. The algorithms were implemented in Visual C++6.0 and tested on a
WindowsXP Professional platform. The test database T20I4D100K was generated synthetically by an algorithm
designed by the IBM Quest project. The synthetic data generation procedure can be found in detail in Agrawal
& Srikant (1994), whose parameter settings we followed: The number of items N is set to 1000; |D| is the
number of transactions; |T| is the averages size of transactions, and |I| is the average size of the maximum
frequent itemsets.

Figure 4 presents the experimental results for different numbers of minimum supports. The results show that the
performance of the ABBM algorithm is much better than that of the Apriori algorithm. Moreover, the better the
performance efficiency of ABBM algorithm is, the smaller the minimum support is. This is because the smaller

Data Science Journal, Volume 6, Supplement, 9 September 2007

S563

the minimum support, the more candidate itemsets the Apriori algorithm has to determine, and also the Apriori
algorithm’s join and pruning processes take more time to execute. However, the ABBM algorithm does not
produce candidate itemsets, and it spends less time calculating k-supports with the Boolean matrix pruned.

0.25 0.5 0.75 1 1.25 1.5
0

20

40

60

80

100

120

Minimum Support (%)

Ti
m

e
(s

ec
)

T20I4D100K

 --+-- Apriori
--●-- ABBM

Figure 5. Performances of Apriori and ABBM

4 CONCLUSION

In this paper, an association rule mining algorithm based on the Boolean matrix (ABBM) is proposed. The main
features of this algorithm are that it only scans the transaction database once, it does not produce candidate
itemsets, and it adopts the Boolean vector “relational calculus” to discover frequent itemsets. In addition, it
stores all transaction data in bits, so it needs less memory space and can be applied to mining large databases.

5 ACKNOWLEDGEMENTS

Project 05457205D-8 supported by Research on Science Technique and Development Planning of Hebei
Province.

6 REFERENCES

Agrawal, R., Imielinski, T., & Swami, A. (1993) Mining association rules between sets of items in large
databases. Proceedings of the ACM SICMOD conference on management of data pp. 207-216. Washington,
D.C.

Agrawal, R. & Srikant, R. (1994) Fast Algorithms for Mining Association Rules in large databases. In
Proceedings of the 20th International Conference on Very Large Databases pp. 487-499. Santiago, Chile.

Han, J., Pei, J., & Yin, Y (2000) Mining frequent patterns Candidate generation. In Proc. 2000 ACM-SIGMOD
Int. Management of Data (SIGMOD'00), Dallas, TX.

Klemetinen, L., Mannila, H., Ronkainen, P., et al. (1994) Finding interesting rules from large sets of discovered
association rules. Third International Conference on Information and Knowledge Management pp.
401-407.Gaithersburg, USA.

Kotásek, P. & Zendulka J. (2000) Comparison of Three Mining Algorithms for Association Rules. Proc. of 34th
Spring Int. Conf. on Modelling and Simulation of Systems (MOSIS'2000), Workshop Proceedings Information
Systems Modelling (ISM'2000), pp. 85-90. Rožnov pod Radhoštěm, CZ, MARQ.

Data Science Journal, Volume 6, Supplement, 9 September 2007

S564

Liu, D. & Kedem, Z. (2002) An Efficient Algorithm for Discovering The Maximum Frequent Set. IEEE
Transaction on Knowledge and Data Engineering 14(3), 553-566.

Park, J., Chen, M., & Yu, P. (1995) An effective hash-based algorithm for mining association rules. Proc 1995
ACM-SIGMOD Int. Conf Management of Data pp. 175-186. San Jose: ACM Press.

Toivonen, H. (1996) Sampling large databases for association rules. 22nd International Conference on Very
Large Data Bases pp. 134–145. Morgan Kaufmann.

Tung, A., Lu, H., Han, J., & Feng, L. (2003) Efficient Mining of Intertransaction Association Rules. IEEE
Transaction on Knowledge and Data Engineering 15(1), 43-56.

Xu, Z. & Zhang, S. (2003) An Optimization Algorithm Base on Apriori for Association Rules. Computer
Engineering 29(19), 83-84.

.

Data Science Journal, Volume 6, Supplement, 9 September 2007

S565

