
 Data Science Journal, Volume 5, 19 October 2006 127

IMPROVING DATABASE QUALITY THROUGH ELIMINATING
DUPLICATE RECORDS

Mingzhen Wei1*, Andrew H. Sung 2, Martha E. Cather 3

1* University of Missouri-Rolla, 1870 miner Circle, Rolla, MO, 65409, USA, email: weim@umr.edu
2 New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA, email: sung@cs.nmt.edu
3 New Mexico Petroleum Recovery Research Center/New Mexico Tech, Socorro, NM, 87801, USA,

email:Martha@prrc.nmt.edu

ABSTRACT
Redundant or duplicate data are the most troublesome problem in database management and applications.

Approximate field matching is the key solution to resolve the problem by identifying semantically

equivalent string values in syntactically different representations. This paper considers token-based

solutions and proposes a general field matching framework to generalize the field matching problem in

different domains. By introducing a concept of String Matching Points (SMP) in string comparison, string

matching accuracy and efficiency are improved, compared with other commonly-applied field matching

algorithms. The paper discusses the development of field matching algorithms from the developed general

framework. The framework and corresponding algorithm are tested on a public data set of the NASA

publication abstract database. The approach can be applied to address the similar problems in other

databases.

Key Words: Field matching, General field matching framework, String matching points, String matching

patterns

1. INTRODUCTION
With the development of WWW and databases, data are becoming more available from different resources.
To benefit the data storing and retrieving, majority of useful data is stored in large databases under certain
database management systems (DBMS). Due to problems in different stages of data flow (Dasu and
Johnson, 2003), it is very easy to introduce data quality problems in databases. Based on Kukich (1992a,
1992b), the average error rate is 1─3% in typed data, 1─16% in optical character recognition (OCR)
processed data, and 5─6% in data obtained by voice communication, respectively. The errors are caused by
misspellings, typos, abbreviations both standardized and non-standardized, character recognition problems
or phonetic problems inherent in these data acquisition methods. Rahm and Do (2000) analyze data quality
problems in single and integrated data sources, as data quality problems being classified as single-sourced
and multiple-sourced problems. Single-sourced data quality problems include data quality problems caused

 Data Science Journal, Volume 5, 19 October 2006 128

by data acquisition and data modeling problems, as illegal values and inter-field mapping problems,
duplicate records; while multi-sourced data quality problems mainly refer to duplicate or redundant records
that are caused by different data conventions and formats in multiple databases.

For above mentioned reasons, data quality problems block recording of real-world objects correctly.
When occurring in the identifying attribute domains, these problems also obstruct the efficient data access.
Problems created by low quality data is often shown by an example of customer data, as described in
Ananthakrishna, Chaudhuri and Ganti (2002). When multiple variations of a customer’s contacts are saved
in databases, as [Lisa Simpson, Seattle, WA, USA, 98025] and [Lisa Simson, Seattle, WA, USA, 98025],
duplicated information will significantly increase the costs on direct mailing. In addition, such duplicates
will cause incorrect results in data analyses, such as a survey of customers of a specific chain store or the
customers’ shopping pattern identification. With all stunning large numbers in its costs for enterprises and
industries in white papers, as cited in a white paper from Trillium Software (2004), data quality problems
are drawing peoples’ attention.

In this paper, the central problem of field matching in database management is discussed. A general
field matching framework is proposed to consider token-based field matching in general. By introducing
the concept of String Matching Points (SMP) in string comparison, improved efficiency and accuracy are
observed. Major string matching problems in different attribute domains are analyzed. A corresponding
field matching algorithm is developed for testing data set from the NASA publication abstract database.
Further improvement of computational efficiency is discussed in the experiments. Promising results are
observed.

The rest of this paper is organized as follows. Section 2 reviews the related work on the field matching
problem and related algorithms; Section 3 presents the concept of String Matching Points in string
comparison; Section 4 presents the proposed field matching framework; Section 5 depicts the experimental
setups and results; and Section 6 concludes the paper.

2. RELATED WORK
The nature of field matching is to identify the similarities of domain values in string representations for
determining their equivalency. String matching has been studied intensively for its applications in signal
processing, computational biology, information retrieval, intrusion detection and others, as summarized in
Sankoff and Kruskal (1983). In those areas, the goal of approximate string matching is to identify the
Longest Common Subsequence (LCS), or to identify one feature in one sequence from the other sequence,
or to identify the abnormality in the targeting sequences. Many algorithms have been developed to resolve
approximate matching problems in these fields. Navarro (2001) provides a comprehensive overview of
these algorithms.

Since field matching is to identify equivalent string values in attribute domains in databases, it is
required to develop algorithms based on the characteristics of string matching problems and the goals. It is
to identify semantically equivalent (identifying) attribute values in syntactically different representations.
As in other application areas, the equivalency of two string values is modeled by their similarity degree in
the range of [0,1], with one as equivalent, zero no similarity. Selection of a proper approximate matching
algorithm is a domain-dependent task, and should be done according to the nature of quality problems in
selected domains.

In the literature, field matching algorithms can be classified into three broad categories: a) character-
based, b) q-gram-based and c) token-based algorithms.

 Data Science Journal, Volume 5, 19 October 2006 129

2.1 Character-based Field Matching
Character-based string matching is a large family for its wide application areas, as summarized by Navarro
(2001). Although designed with different strategies, character-based string matching takes strings as

sequences of characters, as in ncccw ...21= , and compares two strings character by character. The most

commonly applied algorithm in this category is the Levenshtein algorithm (Levenshtein, 1966), also called
simple edit distance algorithm, which calculates the minimum number of atomic editing operations (e.g.
insertions, deletions, transpositions and substitutions) that are required to transform one string to the other.
The edit distance of two strings can be denoted as ED(str1,str2). An example
is 1)"","(" =universtyuniversityED . Levenshtein algorithm is often applied by its normalized

variations (Hernandez and Stolfo, 1995, Navarro et al., 2001, Elfeky, Verykios and Elmagarmid, 2002,
Chaudhuri et al., 2003). The most popular variation is to normalize the edit distance of two strings by their
maximum length, formulated as

|)||,max(|
),(1),(
11

21
21 ss

ssEDsssim −= .

Character-based field matching is capable of comparing strings with slight edit variations created in
data entry and OCR processing. There are other character-based field matching algorithms, such as the
Smith-Waterman algorithm (Smith and Waterman, 1981) and the Jaro algorithms (Jaro, 1989). Some
algorithms are developed to consider first character errors, as a variation of the Jaro algorithm described in
Winkler (1990). Many are designed for searching certain string pattern in long textual files in online search,
as a two-way string comparison algorithm (Crochemore and Perrin, 1991). Online pattern search is a
different prospect from the field matching problem, which will not be addressed in this paper.

2.2 Q-Gram-Based Field Matching

Given a string S and an integer q, the set of q-gram of S, denoted as)(SGq , is obtained by sliding a

window of length q over the characters of string S. For instance, the 3-gram set of “shackleford” can be

represented as }'','','','','','','','','{')"("3 ordforefolefklecklackhacshadshackleforG = . String

matching using q-grams is based on following observation: if two strings are similar to each other they

share a large number of q-grams in common (Ukkonen, 1992). The similarity degree of two strings is

usually modeled as the ratio of common q-grams to the total number of distinct q-grams in two strings.
Combined with database management systems, Q-grams can be efficiently applied in string matching,

as reported in Gravano et al. (2001). Q-gram-based methods employ the sequential substrings to consider

the similarity of two strings. Positional q-grams consider the out-of-order or word transposing problems in

string matching. But q-gram is an inherent space expensive technique, with (m-q+1) q-grams for a string

with length of m. High space consumption means high computational cost in database systems.

2.3 Token-Based Field Matching

Token-based string matching considers strings as consequences or sets of words, as in mwwwS ...21=

and },...,,{ 21 mwwwS = respectively; and each word as a sequence of characters as in character-based

string matching. This adds great flexibility in string comparison for two obvious reasons:

 Data Science Journal, Volume 5, 19 October 2006 130

1) Stop words and punctuation, which have no significant meanings in content representation, can be

easily removed from strings, and only meaningful strings are left to compare;

2) Abbreviations can be taken care by expressing words as sequences of characters, as in

dbouleblvd var→ and TechMexicoNewNMT → .

The importance and requirement of token-based field matching in resolving field matching problems

has been addressed in literature (Kukich, 1992a, Navarro et al., 2003, Han et al., 2004). Both simple and

sophisticated algorithms have been developed and applied in field matching. The simplest token-based field

matching algorithm is the Jaccard similarity metrics, which counts the number of common words NC and

the number of distinct words ND of two strings in comparison, and takes the ratio of NC/ND as the similarity

degree of two strings. The simple field matching algorithm (Monge, Elkan, 1996) is very similar to the

Jaccard metrics, in which the similarity degree is calculated by a simple

formula 2
||||

),(
21

21 ×
+

=
strstr

Nstrstrsim c , where |str1| is the number of words in str1, and |str2| is the number

of words in str2. Given proper thresholds, these algorithms are capable to resolve some equivalence errors

without introducing high false positives (e.g., irrelevant string values identified), but they generate a large

number of true negatives (e.g., semantically equivalent string values unidentified).

In Lee et al. (1999), an algorithm was proposed to improve the field matching accuracy. First, it sorts

tokens in each attribute value in the selected domain, and then sorts records based on selected domain(s) to

bring duplicate records as close as possible. The concept of Record Similarity (RS) was proposed to

calculate the similarity of records by combining the similarity of tokens and similarity of field values. By

defining some string matching patterns, this algorithm improved the field matching accuracy significantly.

Because of the sorting process, the algorithm fails some matches, as in processed strings comput science

department new mexico institute of mining and technology and cs dept new mexico tech, all lowercased.

After removing the stop words and being sorted correspondingly, two sequences become comput institute

mexico new science technology and cs dept mexico new tech. It is impossible to match cs and comput

science, and hence to identify them as completely equivalent strings by all means, because the original

allocation of words is changed.

From above discussion, it is obvious that word allocation plays significant roles in string matching.

Under different contexts, one word means and functions differently. For example, a same word new has

different semantic meanings in fragments of a new cloth and new mexico state. Therefore, it is important to

keep the original allocations in string comparison.

A more sophisticated field matching algorithm was presented in Monge and Elkan (1996, 1997), the

recursive field matching algorithm. This algorithm recursively compares substrings of two strings strA and

strB to obtain the maximum degree of similarity, and calculates the overall similarity by averaging the total

similarity degrees, as shown in formula ∑∑
= =

=
||

1

||

1

),(
||

1),(
A Bstr

i

str

j
BjAi

A
BA strstrsim

str
strstrsim . In the recursive string

matching algorithm, strings are considered as sequences of words, and best matching is achieved by

 Data Science Journal, Volume 5, 19 October 2006 131

comparing substrings iteratively. By cooperating with string matching patterns, this algorithm greatly

improves the string matching accuracy. But it is an extremely expensive algorithm due to its recursive

comparison of substrings. Another essential problem is that oftentimes it is difficult to find the best

matching substrings, especially when related fields are messed up.

Hence, an ideal field matching algorithm should consider the allocation of words in strings, and define

how strings match each other by defining string matching patterns, and have an approach to identify

potential matching substrings fast for the purpose of improving the string matching efficiency. In this paper,

we propose a field matching algorithm that tries to address these problems and to improve the string

matching accuracy and efficiency.

3. THE CONCEPT OF STRING MATCHING POINTS
The concept of String Matching Points (SMP) was inspired by the process of comparing two strings using

our inborn eyesight, in which we obtain a coarse similarity degree of two strings by two steps. In the first

step, two strings are investigated briefly, and potential matching substrings are identified. In the second

step, two potential matching substrings are compared carefully in characters or based on pre-defined string

matching rules. Repeat these two steps and achieve the overall similarity of two strings.

More formally, SMP are defined as follow: given two strings strA and strB, a SMP of a substring sub in

strA is defined as the index of tokens tsmp in strB, where substring sub and token tsmp share the same first

characters. By the definition, it is possible that one substring has multiple SMP or has no SMP in the other

string. For example, the SMP of substrings of cs dept new mexico tech in comput science department new

mexico institute mining technology (all lowercased), will be 1, 3 and 4 consequently, since cs shares the

first character with comput, dept with department, and new with new.

It is obvious that each substring will spot its SMP if two correct strings match each other, even with

abbreviations and shorter representations. Sometimes spotting SMP can be a problem for some erroneous

variations when the errors occur to the first letters. But based on Kukich (1992a), we can trust the first letter

of a word over the others in string comparison. Hence those with SMP will dominate the matches in

equivalent strings.

By introducing SMP, string matching is turned into an iterative procedure of following two steps: 1)

looking for the string matching points and 2) comparing following substrings detailedly. As the SMP

searching is as simple as character comparison, it is an efficient strategy to improve string matching

efficiency. As string matching processes, SMP move forward for unmatched tokens.

Figure 1 shows the string matching process with the assistance of SMP. SMP searching make

identification of maximum matching substrings easier, rather than a trial-and-error process in the recursive

field matching algorithm proposed by Monge and Elkan (1997).

 Data Science Journal, Volume 5, 19 October 2006 132

Given: String A: CS dept NMT
 String B: Comput Science department New Mexico Technology
Compare two strings starting from A→B from leftmost to the rightmost:

1. match substrings cs dept nmt and comput science department new mexico technology
1) Spot the SMP of cs: the matching point is 1.
2) Match cs and the other substring: the matched substring in B is comput science.
3) Mark all matched tokens or words:
 cs dept nmt
 1 0 0
 comput science department new mexico technology
 1 1 0 0 0 0

2. match substrings dept nmt and department new mexico technology
1) Spot the SMP of dept: the matching point is 3.
2) Match dept and the other substring: the matched substring in B is department.
3) Mark all matched tokens:
 cs dept nmt
 1 1 0
 comput science department new mexico technology
 1 1 1 0 0 0

3. match substrings nmt and new mexico technology
1) Spot the SMP of nmt: the string matching point is 4.
2) Match the nmt and the other substring: the matched substring in B is new mexico

technology.
3) Mark all matched tokens:
 cs dept nmt
 1 1 1
 comput science department new mexico technology
 1 1 1 1 1 1

Figure 1. An example of string matching using the concept of string matching points.

4. GENERAL FIELD MATCHING FRAMEWORK
4.1 General Framework
As discussed above, the general field matching framework simulates two steps in string comparison. The

general field matching framework follows the basic steps of token-based field matching algorithms, as

shown in Figure 2.

Input: two strings strA and strB

Output: similarity degree in range of [0, 1] of two strings

General framework:

1. Tokenize strA and strB into two sequences of tokens;
2. Remove stop words and punctuations from two sequences based on domain knowledge;
3. Assume processed two strings as strA’ and strB’ and |strA’|≤|strB’|

 Data Science Journal, Volume 5, 19 October 2006 133

4. String matching
a. String matching with SMP starting from strA’

 for each unmatched token WAi in string strA’:
 a1) Identify the token WBj as the SMP;
 a2) Construct substring in strA’ from WAi and substring in strB’ from WBj;
 a3) Compare constructed substrings based on pre-defined string matching patterns;
 a4) Mark all matched tokens in strA’ and strB’.

b. String matching without SMP starting from strA’
 for each unmarked token WAi in string strA’ :

 a1) Search substrings left in strB’;
 a2) Construct substring in strA’ from WAi and substring in strB’ from WBj;
 a3) Compare constructed substrings based on pre-defined patters;
 a4) Mark all matched tokens.

5. Calculate the similarity degree of strA and strB using formula:

''
''

),(
BA

BA
BA strandstrintokensofnumbertotal

strandstrintokensmarkedofnumbertotal
strstrsim =

Figure 2. The workflow of general token-based field matching framework.

As a token-based approach, the framework takes in the advantages of token-based string matching

methods and keeps only meaningful contents to compare by removing stop words and punctuation in two

strings. Stop words refer to words that mean no significance to the real contents of strings, such as <of, no,

and>, and so on, which are determined based on domain knowledge. Punctuation can be

:}/[],@"\%$#&{*. in string values, also dependent on the domain knowledge. Removing stop words

and punctuation aids in obtaining a correct picture of the equivalency of two strings in comparison.

The actual string matching starts from the shorter string because the shorter string is likely more

compressed by abbreviations, and hence less SMP search is required. The framework considers string

matches with SMP and matches without SMP. As discussed above, in two equivalent strings, the matches

in the first category are expected to be the majority; those in the second category are complementary to

pick up matches with errors in the first characters.

In string matching with SMP, first step is to identify the SMP for unmatched tokens, and then construct

substrings from the SMP to implement the actual comparisons. In actual string matching applications, the

field matching algorithm can be developed from the framework by customizing string matching patterns

according to data quality problems in the selected domain. Matches without SMP are caused by the errors

in the first characters. No matches in this category fit for pre-defined string matching patterns for matches

without SMP. Therefore it is required to compare each unmatched substring in one string with all other

unmatched substrings in the other string to find the maximum matches, as in recursive field matching

algorithm. Since matches in this category are infrequent, they would not cost much.

 Data Science Journal, Volume 5, 19 October 2006 134

4.2 String Matching Patterns
To resolve string matching problems, it is important to define rules or string matching patterns to match

syntactically different substrings. As different domains have different types of equivalence errors, different

string matching patterns are required. We classify all possible string matching patterns into following

categories for facilitating the algorithm development:

1) One-to-one matching: matches between two single words, which include:

• P1: exact match as match → match;

• P2: prefixed match as sci → science;

• P3: concatenation of prefix and postfix as dept → department;

• P4: shorter representation as blvd → boulevard;

• P5: error resilient as institute → instutite;

2) One-to-n matching: matches between a single word and a multi-word string, which include:

• P6: acronymic match as NMT → New Mexico Tech;

• P7: concatenation of prefixes as CalTech → California Institute of Technology;

3) N-to-n matching: matches between two multi-word strings, which include:

• P8: word boundary problem as New Mexico Tech → NewMexico Tech.

The above string matching patterns are discussed in resolving field matching problems in publications

(Monge, Elkan, 1996, 1997, Lee et al.,1999). It is obvious that not all patterns are required for all field

matching applications and this list is not a complete one for all field matching problems.

In order to improve the string matching efficiency, substring construction in the general framework is

done based on the defined string matching patterns, as defined as followings:

• for one-to-one matching, words WAi and WBj are taken to compare;

• for one-to-n matching, continuously unmarked tokens from WAi in strA and continuously unmarked

tokens from WBj in strB are concatenated as subAi and subBj respectively, and string comparisons

are implemented between WAi and subBj, or WBj and subAi;

• For n-to-n matching, continuously unmarked tokens from WAi in strA and continuously unmarked

tokens from WBj in strB are concatenated as subAi and subBj respectively, and string comparisons

are implemented between subAi and subBj.

Because comparisons in one-to-one, one-to-n and n-to-n categories are not same in computational costs,

it is important to select proper string matching patterns to resolve emerged string matching problems in

specific databases. For example, if defined matches are in one-to-one match, it is not necessary to

concatenate the neighboring words into multi-word substrings; and two tokens obtained from two strings

are enough. For n-to-n matches, it is required to concatenate continuously unmatched tokens into multi-

word substrings for both strings. It is obvious that word concatenation and matching multi-word substrings

will cost more than one-to-one matches. Statistical results of equivalence errors in a set of 2,000 distinct

affiliation names and a set of 2000 distinct authors’ names from the NASA publication abstract database on

Astronomy and Astrophysics, and a set of oil producers’ names from New Mexico ONGARD database are

 Data Science Journal, Volume 5, 19 October 2006 135

shown in Table 1. They are obtained by analyzing the equivalence errors in equivalent string values of

these domains.

Table 1. The Distribution of Equivalence Errors in Three Different Domains

Patterns Affiliation1 Name2 Oil Producers’ Name3

P1 93.741 28.178 72.504
P2 3.938 69.932 19.515
P3 0.558 0.156 1.344
P4 0.294 0.734 2.713
P5 0.029 0.165 0.779
P6 0.500 0.028 1.105
P7 0.235 0.028 0.421
P8 0.705 0.780 1.620
P1+P2 97.679 98.11 92.019
P1+P2+P3+P4+P5 98.56 99.165 96.855
P6+P7 0.735 0.056 1.526

Note: 1. Author’s affiliation data from the NASA public publication databases
 2. Author’s name from the NASA public publication databases

 3. Oil producer’s name or property name from the New Mexico ONGARD database

As seen in Table 1, in three different domains, exact and prefixed matches dominate the equivalence

errors, the percentages are 97.68%, 98.11% and 92.02% respectively. It reveals that P1 and P2 are the most

important string matching patterns in field matching. The percentages from one-to-one patterns are more

impressive, with 98.56%, 99.17% and 96.86% respectively. It indicates that for majority of field matching

problems, one-to-one patterns will be sufficient to consider majority of equivalence errors.

5 EXPERIMENTS AND RESULTS
5.1 Setups
A set of affiliation names is abstracted from NASA publication abstract database on Astronomy and

Astrophysics. Since it is an official publication database on Astronomy and Astrophysics, it plays important

roles in literature retrieval in related research. Data standardization will benefit greatly the data

management and other research conducted on the database. Among authors’ name, authors’ affiliation,

paper title, publication title, and other domains, authors’ affiliation is the most problematic domain,

containing many string matching problems as summarized in Table 1.

The experiments are set up to classify equivalent affiliations into one class, which can great aid in data

standardization or removing duplicates in the later stages of data cleaning. To eliminate the effect of

searching algorithms, a complete comparison is applied, in which every string compares with every other

string to determine their equivalency. Strings with similarity degrees higher than pre-defined threshold are

classified into one class. The string matching accuracy is evaluated by the accuracy of the classification.

 Data Science Journal, Volume 5, 19 October 2006 136

In this practice, each resulting class belongs to one of following types, compared with a validated

classification result:

Type 1: All representations in a class are of the same affiliation, and the class contains all

representations of the same affiliation, which is the perfect case for classification.

Type 2: All representations in a class are of same affiliation, and the class does not contain all

representations of the same affiliation, which is still correct classification.

Type 3: The other cases that include a class contain representations of multiple affiliations, and totally

wrong classification.

5.2 Customized Field Matching Algorithm
Based on Table 1, equivalence errors in one-to-one category is essential to resolve majority field matching

problems. By considering one-to-one equivalence errors, including P1, P2, P3, P4 and P5, in matching with

SMP and error resilient type of equivalence errors (e.g., P5) in matching without SMP, majority string

matching problems can be resolved. By considering these string matching patterns, the actual field

matching algorithm is customized as follows in Figure 3.

Input: two strings strA and strB

Output: similarity degree in range of [0, 1] of two strings

Procedure:

1. Tokenize strA and strB into two sequences of tokens;
2. Remove stop words and punctuation from two sequences based on domain

knowledge;
3. Assume two processed strings as strA’ and strB’ and |strA’|≤|strB’|
4. String matching

a. String matching with SMP
 for each unmatched token WAi in string strA’:

 a1) Identify the token WBj as the SMP;
 a2) Compare WAi and WBj according to one-to-one patterns;
 a3) Mark WAi and WBj if they match each other.

b. String matching without SMP
 for each unmarked token WAi in string strA’ :

 a1) Search unmatched token WBj in strB’;
 a2) Compare WAi and WBj according to error resilient pattern;
 a3) Mark WAi and WBj if they match.

5. Calculate the similarity degree of strA and strB using formula:

''
''

),(
BA

BA
BA strandstrintokensofnumbertotal

strandstrintokensmarkedofnumbertotal
strstrsim =

Figure 3. The field matching algorithm applied in experiments.

 Data Science Journal, Volume 5, 19 October 2006 137

5.3 Results and Discussions
5.3.1 Comparison of Field Matching Algorithms
In comparison of field matching algorithms, we consider classification accuracy and time efficiency. Time

efficiency is evaluated by computational costs, and classification accuracy is evaluated by both perfect

classification and correct classification. Results are shown in Figures 4, 5 and 6.

From Figure 4, it is obvious that time complexity of the new algorithm is between the simple token-

based algorithms, including Jaccard similarity metrics and the simple field matching algorithm, and

complicated token-based and character-based algorithms, including normalized edit distance (NED), Jaro

and record similarity algorithm (Lee et al., 1999). It indicates that the new algorithm belongs to

sophisticated token-based algorithms that consider multiple string matching patterns in string matching;

also the new algorithm is an efficient algorithm by skipping a large number of comparisons by searching

the SMP before detailed comparison. The new algorithm is a less expensive algorithm compared with NED,

and it is more sophisticated in considering potential problems in string matching, such as word

transpositions and abbreviations and single-error misspellings.

Results of perfect classification (type 1) are the best results revealing the classification accuracy. As

shown in Figure 5, they all achieve their peak performance when threshold is 0.85, which indicates

similarity threshold of 0.85 can be considered as the optimized threshold in identifying equivalent values

using these algorithms. The best performed algorithms are NED, Jaro and the new algorithm, with the new

algorithm being much cheaper.

Correct classification, including classification in Type 1 and Type 2, is also an indicator of the

performance of a field matching algorithm. As shown in Figure 6, the NED, Jaro and the new algorithms

perform best. This observation discovers that token-based algorithms work no better than character-based

algorithms unless necessary string matching patterns are designed, and it confirms the conclusion that

proper string matching patterns are required in string matching. Because correct classification only

considers classes that are correctly clustered, with one perfect cluster maybe split into several correct

clusters, the results are more complicated. For the new algorithm, its accuracy of correct classification is

basically climbing as the increase of similarity thresholds, up to its peak at threshold of 0.85.

 Data Science Journal, Volume 5, 19 October 2006 138

200000

300000

400000

500000

600000

700000

800000

900000

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
threshold

co
m

pu
ta

tio
n

co
st

 (i
n

m
in

.)

NED Monge1
Jaccard Jaro
LLLK99 new

Figure 4. Computational costs using different field matching algorithms.

0

50

100

150

200

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
threshold

of

 p
er

fe
ct

 c
la

ss
ifi

ca
tio

n

NED Monge1
Jaccard Jaro
LLLK99 new

Figure 5. Perfect classification results using different field matching algorithms.

 Data Science Journal, Volume 5, 19 October 2006 139

0

50

100

150

200

250

300

350

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
threshold

of

 c
or

re
ct

 c
la

ss
ifi

ca
tio

n

NED Monge1
Jaccard Jaro
LLLK99 new

Figure 6. Correct classification using different field matching algorithms.

5.3.2 Effect of String Matching Patterns
Effect of string matching patterns is studied using the same problem, as shown in Fig. 7 and 8. Different

field matching algorithms developed from the general field matching framework, as [new 1], [new 2], [new

3], [new 4] and [new 5], consider different string matching patterns. More detailedly, the string matching

patterns considered in these algorithms are:

− new 1: P1, P2, P3, P4, P8 with only SMP;

− new 2: P1, P3, P4, P8 with only SMP ;

− new 3: P1, P2, P3, P4, P5, P6, P8 with only SMP;

− new 4: P1, P3, P4, P5, P6, P8 with only SMP;

− new 5: P1, P3, P4, P5, P6, P8 with SMP, and P8 without SMP.

From the results, P2, which is prefixed matches, matters significantly in string matching because [new

1] outperforms [new 2] greatly in perfect classification results before the edit distance threshold as 0.85.

This is because that prefixed match is an important pattern, as indicated in Table 1, and ignoring the

prefixed matches would cause loss in identifying equivalent values. But it does not necessarily mean down

performance in correct classification because correct classification does not require all equivalent values be

clustered in one cluster.

Results also reveal that once the most important string matching patterns are considered, no substantial

increases in accuracy are observed by adding one or more other string matching patterns. This conclusion

also accords with the statistical results in Table 1, which says that one-to-one patterns dominate matches in

different attribute domains and other equivalence errors are really minus problems in string matching.

 Data Science Journal, Volume 5, 19 October 2006 140

0

50

100

150

200

250

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
threshold

of

 p
er

fe
ct

 c
la

ss
ifi

ca
tio

n

new 1 new 2
new 3 new 4
new5

Figure 7. Perfect classification of different field matching algorithms developed using the general field

matching framework by considering different string matching patterns.

0

50

100

150

200

250

300

350

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

threshold

of

 c
or

re
ct

 c
la

ss
ifi

ca
tio

n

new 1 new 2
new 3 new 4
new 5

Figure 8. Correct classification of different field matching algorithms developed using the general field
matching framework by considering different string matching patterns.

6 CONCLUSION
In this paper, a central problem of entity identity, also named as object identification or field matching in

data cleaning community is addressed. Following conclusions are achieved:

• The purposes of a general field matching framework are to facilitate the field matching

problems in different domains and databases.

 Data Science Journal, Volume 5, 19 October 2006 141

• By introducing SMP, string matching is converted to a two-step process: firstly identifying

potential matching starting-points for particular substrings, and then matching substrings

based on pre-defined string matching patterns.

• Algorithm development from the general framework is addressed, and an algorithm is

developed for a set of affiliation from NASA publication abstract database.

• Experimental results discover the advantages of new field matching strategy over other field

matching algorithms, both in string matching accuracy and computational efficiency.

• With the proposed general framework, field matching problems in different domains and

databases should be addressed more easily and more accurately.

REFERENCES
Ananthakrishna R., Chaudhuri S., Ganti V., (2002) Eliminating fuzzy duplicates in data warehouses, in the
Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002.

Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R., (2003) Robust and Efficient Fuzzy Match for Online
Data Cleaning, proceedings of SIGMOD 2003, June 9-12, San Diego, CA.

Crochemore M., Perrin D., (1991) Two-way string matching, Journal of the ACM.

Dasu, T., Johnson, T., (2003) Exploratory data mining and data cleaning, New York: Wiley-Interscience.

Gravano L., Ipeirotis P. G., Jagadish H. V., Koudas N., Muthukrishnan S., Srivastava D., (2001)
Approximate string joins in a database (almost) for free, Proceedings of the 27th International Conference
on Very Large Databases, pp: 491-500.

Han H., Giles L., Zha H., Li C., Tsioutsiouliklis K., (2004) Two supervised learning approaches for name
disambiguation in author citations, Proceedings of the 2004 joint ACM/IEEE conference on Digital
Libraries, Tuscon, AZ, USA.

Hernandez, M. A., Stolfo, S. J., (1995) The Merge/Purge Problem for Large Databases, proceedings of
ACM SIGMOD/PODS, San Jose, CA.

Jaro M. A., (1989) Advances in record-linkage methodology as applied to matching the 1985 census of
Tampa, Florida, Journal of the American Statistical Association, Vol. 84 (406).

Kukich, K., (1992a) Techniques for automatically correcting words in text, ACM Computing Surveys, Vol.
24(4).

Kukich, K., (1992b) Spelling correction for the tele-communications network for the deaf, Communications
of the ACM, Vol. 35(5).

Levenshtein V., (1966) Binary codes capable of correcting deletions, insertions and reversals, Soviet
Physics Doklady, Vol. 10.

 Data Science Journal, Volume 5, 19 October 2006 142

Lee, M.L., Lu, H., Ling, T. W., Ko, Y. T. (1999) Cleansing data for mining and warehousing, proceedings
of the 10th DEXA, pp:751-760.

Monge, A.E., Elkan, C.P. (1996) The field matching problem: algorithms and applications, Proceedings of
the 2nd SIGKDD, Portland, Oregon, USA.

Monge, A.E., Elkan, C.P. (1997) An efficient domain-independent algorithm for detecting approximately
duplicate database records, Proceedings of DMK97, Tucson, Arizona.

Navarro G., (2001) A guided tour to approximate string matching, the ACM Computing Survey, vol. 33(1),
pp: 31-88.

Navarro G., Baeza-Yates R., Arcoverde J., (2003) Matchsimile: a flexible approximate matching tool for
searching proper names, Journal of the American Society for Information Science and Technology, vol.
54(1).

Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J., (2001) Indexing Methods for Approximate String
Matching, IEEE Data Engineering Bulletin, Vol. 24(4), pages 19-27.

Rahm, E., Do, H., (2000) Data cleaning: problems and current approaches, IEEE Bulletin of the Technical
Committee on Data Engineering, Vol. 23(4).

Sankoff D., Kruskal J., (1983) Time warps, string edits, and macromolecules: the theory and practice of
sequence comparison, Addison-Wesley, Reading, MA.

Smith T. F., Waterman M. S., (1981) Identification of common molecular subsequences, Journal of
Molecular Biology, Vol. 147, pp195-197.

Trillium Software, (2004) How data profiling & analysis saves companies $millions, white paper in Data
Integration and Data Quality Management.

Ukkonen E., (1992) Approximate string-matching with q-grams and maximal matches, Journal of
Computer Science 92, pp. 191-211.

Winkler W. E., (1990) String comparator metrics and enhanced decision rules in the Fellegi-Sunter model
of record linkage, Proceedings of the Section on Survey Research Methods, American Statistical
Association, 1990, pp:354-359.

