
MODEL MANAGEMENT IN VIRTUAL REALITY RESEARCH
Jungang Xu1*, Liang Zhou 2, Kun Zhang 2, and Wenyao Zhang 3

*1School of Information Science & Engineering, Graduate University of Chinese Academy of Sciences, 100080
Beijing, China.
Email: xujg@gucas.ac.cn
2School of Information Engineering, Beijing University of Science & Technology, 100083 Beijing, China.
Email: {iamzhouliang, lilykun}@163.com
3School of Computer Science & Technology, Beijing Institute of Technology, 100081 Beijing, China.
Email: zhwenyao@gmail.com

ABSTRACT

In this paper, a Bi-angle Model Management method (BiMM) is proposed to manage models in virtual reality
research. One angle is based on the model itself, which includes the model, model scheme, and texture; another
angle is based on the model sort - each sort has its child sorts except leaf nodes. Based on this method, we have
developed a model management application that has the following major functions: model management, model
sort management, model query, model statistics, model registration into database as a whole, etc. With this
method, researchers can manage model data conveniently and efficiently.

Keywords: Virtual Reality, Model, Model scheme, Texture, Model sort, XML

1 INTRODUCTION

Virtual reality technology was originally introduced in the late 1990s. It synthesized many technologies, such as
digital image processing, computer graphics, multimedia, sensor technology, and so on, which facilitate the
development of computer technology. Nowadays, virtual reality technology has been applied in many fields, such
as computer games, industry, medicine, military, etc. Meanwhile, many universities and academies are also
pursuing virtual reality technology research.

The virtual world created with virtual reality technology is artificial and imaginary, and there are many planar and
three-dimensional models in this world. These models play different roles, and they can change their appearance
according to changes in the environments around them. With the increase in the number of models, it is not
enough to manage them manually. For example, to use a model during the course of building a virtual scene, a
developer has to look for it in large numbers of models manually, which will negatively influence our work
efficiency. Therefore, it is necessary to manage models with computer applications so that they can be found very
easily and quickly.

One solution to this problem is proposed in this paper. In Section 1, the problem of how to manage a large number
of models in VR research is put forward; in Section 2, a method of model management, called BiMM, is
introduced; in Section 3, based on BiMM method, we develop an application using Visual Basic and Oracle 9i;
and finally, we give the conclusions and directions for future work.

Data Science Journal, Volume 6, Supplement, 18 November 2007

S797

2 THE BiMM MODEL MANAGEMENT METHOD

In order to manage many models in virtual reality research, one method, called BiMM (Bi-angle Model
Management), is proposed. As to Bi-angle, we consider model composition as one angle, and consider model sort
as the other angle.

For the first angle, a model can be described by a 3-level architecture, which is ‘model-model scheme-texture,’
meaning that one model can have several model schemes, and each model scheme can have several textures. For
example, ‘Mary Zhang’ is a virtual person in VR research, and she has different clothes for four seasons, including
‘Spring clothes,’ ‘Summer clothes,’ ‘Autumn clothes,’ and ‘Winter clothes,’ that is to say, model ‘Mary Zhang’
has 4 different model schemes. Each model scheme has its own textures; for example, Model scheme ‘Winter
clothes’ has 4 textures, including ‘Hat,’ ‘Jacket,’ ’Trousers,’ and ‘Shoes’. This example is illustrated in Figure 1.

Figure 1. An example of model composition

As for the second angle, models can be classified into many model sorts, including one total sort (denoted as C0),
several 1-level sorts (denoted as C1), several 2-level sorts (denoted as C2), …, several N-level sorts (denoted as CN).
Therefore, model sorts can be denoted with a multidimensional array as follows: (C0, C1, C2, …, CN).

Spring clothes

Mary Zhang

Hat Jacket Trousers Shoes

Model

Model
scheme

Texture

Winter clothes Autumn clothes Summer clothes

Data Science Journal, Volume 6, Supplement, 18 November 2007

S798

Figure 2. An example of model sorts

Note that a model sort has its child model sorts and its own models. For example, we can classify people into many
sorts according to where they live, denoted as multidimensional array as follows: (Earth, Continent, Country, and
State/Province). As for one person, such as ‘Mary Zhang,’ assume that she lives in Beijing, China, Asia, so we can
place her in the ‘Beijingnese’ sort, or if her state/province attribute is not valuable, we can also place her in the
‘Chinese’ sort. This example is illustrated in Figure 2.

3 DATABASE DESIGN

3.1 The design of the E-R model and relation schema

Database design includes logic data model design and physical data model design. Based on the BiMM method
proposed in section 2, we analyzed model information in virtual reality, and extracted four entities: Model, Model
scheme, Texture, and Model sort. Their E-R model is displayed in Figure 3; the relationship between entity
‘Model’ and entity ‘Model sort’ is multiple-to-one (denoted as n:1); the relationship between entity ‘Model’ and
entity ‘Model scheme’ is one-to-multiple (denoted as 1:n); and the relationship between entity ‘Model scheme’
and entity ‘Texture’ is multiple-to-multiple (denoted as m: n).

Japanese
Country
 sort

Oceanian

Shandongnes

Earth people

Asian American African European

Chinese South Korean …..

Total sort

Continent
 sort

Beijingnese Shanghainese Guangdongne …

Mary Zhang

State/
Province
 sort

Data Science Journal, Volume 6, Supplement, 18 November 2007

S799

Figure 3. E-R model of model management in virtual reality

Based on the E-R model, we designed five relation schemas corresponding to the four entities described above.
These five relation schemas are listed below; the underlined strings are keys or foreign keys of that relation
schema.
Model(Model_ID,Model_Sort_ID,Model_Name,Model_Producer,Model_Texture_Number,
Model_Register_Time,Model_Fize_Size,Model_Relative_Path);
Model_Scheme(Model_Scheme_ID,Model_ID,Model_Scheme_Name,Model_Sheme_Is_Defaut,
Model_Scheme_Register_Time);
Texture(Texture_ID,Texture_Name,Texture_Sequence_ID,Texture_Producer,Texture_Register_Time,
Texture_File_Size,Texture_Relative_Path);
Model_Scheme_Texture(Texture_ID,Model_Scheme_ID);
Model_Sort(Model_Sort_ID,Model_Sort_Name,Model_Sort_Up_ID,Model_Sort_Full_ID,
Model_Sort_Depth,Model_Sort_Creat_Time).

3.2 The algorithm for storing and querying model sort data

A model sort has its child sorts, and these child sorts also have their own child sorts. In the relational schema
Model_Sort, we used four data fields to describe the father sort and child sort of the current model sort, which are
Model_Sort_ID, Model_Sort_Up_ID, Model_Sort_Full_ID and Model_Sort_Depth.

Model_Sort_ID is the self-increasing key of table Model_Sort, which has an integer data type;
Model_Sort_Up_ID stores the value of Model_Sort_ID of the father model sort of the current mode sort, also an
integer data type; Model_Sort_Full_ID stores the whole path from the top model sort node to the current model
sort node, with a varchar data type and separates different level nodes with the comma character (,).
Model_Sort_Depth stands for the depth of the current model sort, that is, the depth from the top model sort node to
the current model sort node.

Figure 4 illustrates an example of model sorts. In this figure, the digit in each circle represents the value of
Model_Sort_ID of that model sort. So, in the database, the values of Model_Sort_ID, Model_Sort_Up_ID,
Model_Sort_Full_ID, and Model_Sort_Depth are listed in Table 1.

ModelModel scheme Model sort

Texture

n 1 1n

n

m

Data Science Journal, Volume 6, Supplement, 18 November 2007

S800

Figure 4. An example of multiple-level model sorts

Table 1. The values of Model_Sort_ID, Model_Sort_Up_ID, Model_Sort_Full_ID, Model_Sort_Depth
Model_Sort_ID
（Integer）

Model_Sort_Up_ID
（Integer）

Model_Sort_Full_ID
（Varchar）

Model_Sort_Depth
（Integer）

0 Null 0 0
1 0 0,1 1
2 0 0,2 1
3 1 0,1,3 2
4 1 0,1,4 2
5 2 0,2,5 2
6 3 0,1,3,6 3
7 4 0,1,4,7 3
8 4 0,1,4,8 3
9 7 0,1,4,7,9 4

Based on this algorithm, several examples of model or model sort queries are listed in Table 2; these queries are
described with the SQL clause.

Table 2. Several examples of model or model sort queries
Query all child sorts of
Model_Sort_ID=1sort

Select * from Model_Sort where Model_Sort_Up_ID=1

Query all child sorts of
Model_Sort_ID=4 sort,
and list them in sequence

Select * from Model_Sort where ‘,’+ Model_Sort_Full_ID +‘,’like
‘%,’+ (select Model_Sort_Full_ID from Model_Sort where
Model_Sort_ID=4)+‘,%’ order by Model_Sort_Full_ID DESC

Query all models included
by Model_Sort_ID=4 sort
and its all child sorts

Select * from Model where Model_Sort_ID　in (select Model_Sort_ID
from Model_Sort where ‘,’+ Model_Sort_Full_ID +’,’ like ‘%,’+ (select
Model_Sort_Full_ID from Model_Sort where Model_Sort_ID=4))

 1

 3 4

 2

 5

 6 8 7

 9

 0

Data Science Journal, Volume 6, Supplement, 18 November 2007

S801

4 APPLICATION DESIGN AND IMPLEMENTATION

We used Microsoft Visual Basic as our programming language, used Oracle 9i as our database management
system (DBMS), and implemented the model management module, model sort management module, model
queries module and model statistics module. Meanwhile, we implemented model registration into database as a
whole with XML technology. These modules will be discussed in section 4.1 and 4.2.

4.1 Application module design

The main modules of this application are described as follows.

4.1.1 File system configuration

This module is used to configure the file folder path which is used to store model files and texture files. Three
parameters need to be configured in this module: the virtual root directory (specifying the root directory of all
related files), model file folder (specifying the model file path relative to virtual root directory), and texture file
folder (specifying the texture file path relative to virtual root directory).

4.1.2 Model management

In this module, we use three windows to realize model management: the model window, model scheme window,
and texture window. These three windows are not isolated; they are correlated, model scheme window displays all
model schemes of the current model selected in model window, and texture window displays all textures of the
current model scheme selected in model scheme window. Figure 5 displays these three windows, and also
displays a model named ‘Mary Zhang’ in model window and its model schemes (‘Spring clothes’, ‘Summer
clothes’, ‘Autumn clothes’ and ‘Winter clothes’) in model scheme window, textures (‘Hat’, ‘Jacket’, ’Trousers’
and ‘Shoes’) of ‘Winter clothes’ are displayed in texture window.

Figure 5. Model management window

Data Science Journal, Volume 6, Supplement, 18 November 2007

S802

Adding a new model is easily done through a model window. The float menu will appear (illustrated in Figure 5),
and by selecting the menu item ‘add model,’ a model adding window will appear. When adding a new model, at
least one model scheme of this model (considered as default scheme) must be added, along with one texture of
each mode scheme. Without this, the model data cannot be registered into the database.

4.1.3 Model sort management

Model sort management can be realized in the left window of the application. To add a new child sort under a
model sort, this model sort is selected first; one float menu will appear (illustrated in Figure 6). By selecting the
menu item ‘add subclass,’ a sort adding window will appear. Meanwhile, model sorts can be deleted but only
when there are no models or child sorts under this model sort.

Figure 6. Model sort management window

4.1.4 Model queries

The model data stored in the database can be retrieved according to multiple query conditions, such as model sort,
numbers of mode schemes, texture name, model registering time, and so on.

4.1.5 Model statistics

Model statistics can be realized according to various statistical requirements, such as model accounts registered
during a particular time interval, model file size in a particular interval, all models under particular model sorts,
numbers of textures included in one model, and so on.

Data Science Journal, Volume 6, Supplement, 18 November 2007

S803

4.2 Registering bulk model data into the database

During the course of registering model data into the database, if one model is registered at a time, the registering
efficiency will be very low. However, when there are many similar models, it is possible to register them as a
whole. Therefore, a module that can register many models into database at once has been designed and developed.
It can greatly improve registration speed. In this module, XML technology is used to define the model set; to
register this model set into the database, it must first be extracted from the XML file. The model set definition in
the XML file is listed below.
<?xml version="1.0" encoding="utf-8" ?>

<modelset packtime="2006-09-10 12:00:00">
<model>

<name>Mary Zhang</name>
<filepath>c:\VrRoot\Modelfile</filepath>
<producer>Alina</producer>
<texturenumber>4</texturenumber>

 <schemes>
 <scheme name="Winter clothes" isdefault="true">

<textures>
<texture name="Hat">
<relative_path>texturefile</relative_path>
</texture>
<texture name="Jacket">
<relative_path>texturefile</relative_path>
</texture>
……

 </textures>
 </scheme>

<scheme name="Summer clothes" isdefault="false">
<textures>
……

 </textures>
 </scheme>
 ……
 </schemes>
 </model>

<model>
 ……
 </model>

</modelset>

5 CONCLUSION

The BiMM method is proposed to manage models in virtual reality research. This method describes models from
two angles: one angle is based on model composition, which includes the model, model scheme, and texture;

Data Science Journal, Volume 6, Supplement, 18 November 2007

S804

another angle is based on model sort, each sort has its child sorts except leaf nodes. Based on this method, we
designed a model database, an E-R data model, and five relational schemas. The main modules include model
management, model sort management, model queries, model statistics, model registration into database as a
whole, etc. Now the application has been used in model data management in virtual reality research, and it has
proven to be very effective.

In the future, we will manage more model information in this model management application, such as action,
sound, video, specifications, and so on.

6 ACKNOWLEDGEMENTS

We would like to thank the members of the Beijing Scene China Corp. for their work in the development of this
model management application.

7 REFERENCES

Cheung, N.T., Lam, A., Chan, W., & Kong, J.H. (2005) Integrating images into the electronic patient record of the
hospital authority of Hong Kong. Computerized Medical Imaging and Graphics 29 (2-3), 137–142.

Kari, B., Mester, A.R., Gyorfi, Z., Mihalik, B., et al. (2005) Clinical evaluation of multi-modality image archival
and communication system in combination of WEB based teleradiology. International Congress Series 1281,
974–979.

Vogl, R., Berreck, M., Brauns, T., et al. (2005) The Innsbruck Advanced Image Management (AIM) project—a
central archive and distribution system for radiology and multimedia data. International Congress Series 1281,
871–876.

Ying, W., Yingyun, H., Haichao, Z., & Zhiqiang, L. (2003) An overview of virtual reality technology. Computer
and Digital Engineering 30(3), 41–44.

Data Science Journal, Volume 6, Supplement, 18 November 2007

S805

