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In several domains, privacy presents a significant obstacle to scientific and analytic research, 
and limits the economic, social, health and scholastic benefits that could be derived from 
such research. These concerns stem from the need for privacy about personally identifiable 
information (PII), commercial intellectual property, and other types of information. For exam-
ple, businesses, researchers, and policymakers may benefit by analyzing aggregate information 
about markets, but individual companies may not be willing to reveal information about risks, 
strategies, and weaknesses that could be exploited by competitors. Extracting valuable utility 
from the new “big data” economy demands new privacy technologies to overcome barriers that 
impede sensitive data from being aggregated and analyzed.

Secure multiparty computation (MPC) is a collection of cryptographic technologies that can 
be used to effectively cope with some of these obstacles, and provide a new means of allowing 
researchers to coordinate and analyze sensitive data collections, obviating the need for data-
owners to share the underlying data sets with other researchers or with each other. This paper 
outlines the findings that were made during interdisciplinary workshops that examined potential 
applications of MPC to data in the social and health sciences.

The primary goals of this work are to describe the computational needs of these disciplines and 
to develop a specific roadmap for selecting efficient algorithms and protocols that can be used 
as a starting point for interdisciplinary projects between cryptographers and data scientists.
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I. Introduction: The need for statistics from private data
Tension between research and privacy: In many arenas privacy concerns pose a significant barrier to 
scientific research and any ensuing economic, social and health benefits. Many privacy concerns stem from 
personally identifiable information (PII). Detailed health records can help doctors and researchers improve 
diagnosis and treatment, but at an individual level, these records contain extremely sensitive personal infor-
mation. Similarly, data-sets concerning student performance can help researchers and teachers identify and 
implement successful pedagogical techniques, but the underlying data (which may contain detailed infor-
mation about children) must remain private. In other scenarios, privacy concerns may be economic rather 
than personal. Businesses may stand to gain by analyzing aggregate information about their markets, cus-
tomers, risks etc., but the underlying data may contain information about each company’s costs, strategies 
and weaknesses that could be exploited by competitors. For example, satellite operators often experience 
“anomalies” which indicate a malfunction or complete loss of function of the satellite. Diagnosing these 
anomalies is time and resource intensive, and the diagnosis could be streamlined if information were shared 
between operators. Operators are unwilling to share anomaly information, however, as it often indicates a 
business weakness that could be exploited by competitors (Galvan et al. 2014). In all these situations privacy 
considerations pose obstacles that increase the cost, slow the pace, or completely prevent using the data to 
their fullest.
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These privacy concerns are only intensified as improved technology allows us to collect, store, transmit and 
process data at an ever-increasing scale. But these technological improvements have done little to address 
privacy concerns, and providing researchers with a means of securely and efficiently analyzing sensitive data 
remains a problem. Extracting maximum utility from the new “big data” economy requires new techniques 
to overcome privacy barriers that prevent sensitive data from being aggregated and analyzed.

Secure multiparty computation (MPC) is a cryptographic tool that can be used to overcome some of these 
obstacles, and provides a means of allowing researchers to securely merge and analyze sensitive data sets, 
without requiring data-owners to share the underlying data sets with researchers or each other.

To illustrate the power of MPC, we consider a simple, idealized example. Suppose a researcher wishes 
to perform statistical tests on patient data held by multiple healthcare providers. In some situations, the 
researcher may be able to negotiate a data-use agreement, allowing her access to each of the data sets in 
question, but when privacy considerations prevent the data owners from sharing their data, there may be no 
way to aggregate all the data into a single data set accessible to the researcher. Using MPC, the problem can 
be resolved as follows: the researcher and the data owners will engage in a cryptographic protocol, exchang-
ing enciphered messages, with the guarantee that at the end of the protocol, the researcher will learn the 
result of her statistical query (e.g. regression coefficients) as applied to the aggregation of the data held by 
all the data owners, and nothing more. In this scenario, the data owners never need to share the underlying 
data sets with anyone, instead cryptography provides a means of computing on private data without requir-
ing data-sharing.

In this report, we describe how existing MPC protocols work, and examine how these general purpose 
cryptographic protocols can be applied to concrete problems of computing statistics on private data.

The need for real-time analysis: In addition to its strong privacy guarantees, MPC has other benefits 
that improve upon existing methods for securely analyzing sensitive data. One example is the need for 
real-time analysis. Currently, it can be difficult to use sensitive data to provide real-time analytics to support 
decision making. A traditional workflow might involve a researcher requesting sensitive data from a data 
owner, the data owner would then check the credentials of the researcher, anonymize and sanitize the data, 
ship the sanitized data to the researcher, possibly review any summary statistics produced by the researcher 
to determine whether they pose a disclosure risk. Each of these steps may require human interaction, and 
the entire process can take weeks or months from the time when the researcher makes a request to the time 
the sanitized data are received. This lag time eliminates the possibility of using these data for real-time deci-
sion making. MPC can streamline this entire process. Because using MPC for data analytics does not require 
sharing the underlying data sets, data owners will not have to anonymize or de-identify their data before 
engaging in an MPC protocol. (Data owners will, however, still be required to engage in non-privacy related 
data cleaning procedures, e.g. outlier removal). Because MPC protocols are completely automatic, there is no 
need for human interaction in the process, other than to agree on the statistics being computed.

Reproducibility and transparency: Open science requires that researchers make their methods and data 
public so that results and conclusions can be independently verified and validated. This notion of open sci-
ence is at odds with privacy considerations, since a researcher, who has been granted access to a sensitive data 
set, cannot simply publish the underlying data sets for others to see. MPC provides an alternative means of 
transparency. Through the interface of MPC, data owners can provide other researchers with a secure means 
of performing statistics on the sensitive data without sharing the underlying data themselves. This type of 
secure interface could make it easier for researchers to reproduce, validate and extend each other’s work.

Understanding MPC – a cryptographic replacement for a “trusted broker”: In many scenarios, pri-
vacy obstacles can be overcome if an external broker, trusted by all stakeholders, can be found. The trusted 
broker will aggregate the private data, perform computations, and report conclusions. This type of “trusted 
broker” solution requires all data providers to identify and employ a jointly trusted entity. For example, in 
order to prevent collisions between on-orbit satellites, some satellite operators employ Analytical Graphics 
Incorporated (AGI) as a trusted broker. AGI runs the Space Data Association (Anon n.d.), where members 
share their confidential orbital information with AGI, and AGI issues warnings and reports, but is contractu-
ally bound not to share the underlying data with any outside party. Similarly, the SCAlable National Network 
for Effectiveness Research (SCANNER) (Anon n.d.) developed distributed statistical analysis infrastructure 
to support hospitals build logistic regression model using locally aggregated statistics without exchanging 
sensitive patient level data. In many situations, however, legal and trust issues may make finding a trusted 
broker difficult or impossible. Even in situations where a mutually trusted broker can be found, employing 
their services can be costly and exposes sensitive data to an additional threat if the trusted broker is hacked 
and all sensitive data is stolen.
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The trusted broker model provides a simple means of understanding the power of MPC. MPC can be viewed 
as a way of replacing a trusted broker with cryptographic algorithms, eliminating the need for mutual trust 
and the need to aggregate all the sensitive data in one place, making a single point of vulnerability. The 
trusted broker analogy also provides a useful means of identifying use-cases where MPC might be applicable. 
If the existence of a trusted broker would provide a means for securely computing statistics on sensitive 
data, then MPC could do the same without requiring the existence of a trusted broker. On the other hand, 
in situations where a trusted broker is insufficient to provide a completely secure solution, then MPC will 
also be insufficient. For example, a trusted broker who securely computes statistics and simply provides the 
results does not immediately solve the problem of inferential disclosure. This is discussed in detail in the 
next section.

Efficiency considerations: MPC protocols incur a significant overhead in both communication and 
computational costs compared to computing the same function insecurely. Different MPC architectures have 
different performance characteristics, but historically, the efficiency concerns have hindered deployment of 
MPC protocols. The cryptographic community has been working for decades to improve the performance of 
MPC protocols, and today, although efficiency concerns are an issue, knowledge and usability of the software 
are often bigger impediments to adoption.

II. MPC as a solution
A. What MPC is
A simple example — securely computing averages: Secure multiparty computation provides a means 
for securely computing any computable function on private data without the data owners ever sharing 
the data with each other or anyone else. At first glance, this appears to be an impossible guarantee. To 
illustrate the mathematics behind MPC, we describe a simple MPC protocol that allows three data own-
ers to compute the mean of their private data.1 Call the data owners A, B, C and their (private) data DA, 
DB, DC. At a high level, the protocol works as follows. Each participant A, B, C will generate completely 
random numbers, sampled uniformly from a sufficiently large range (Rij). They will then distribute the 
random values to the other participants, who will each add random numbers to their private values (DA, 
DB, DC) to get enciphered values (YA, YB, YC). Finally, participants will combine the outputs of all local 
computations to obtain the final global computation result. Because each participant only obtains ran-
domly generated values from the other participants, no information about each participant’s private 
value is leaked.

The protocol to compute the mean consists of the following steps.

•	 Randomness generation
◦ A generates random values RAB and RAC and sets RAA = DA – RAB – RAC

◦ B generates random values RBA and RBC and sets RBB = DB – RBA – RBC

◦ C generates random values RCA and RCB and sets RCC = DC – RCA – RCB

•	 Distribution
◦ A sends RAB  to B and RAC to C
◦ B sends RBA  to A and RBC to C
◦ C sends RCA  to A and RCB to B

•	 Computation
◦ A computes YA = RAA + RBA + RCA

◦ B computes YB = RAB + RBB + RCB

◦ C computes YC = RAC + RBC + RCC

•	 Reconstruction
◦ The players share YA, YB, YC with each other and (publicly) compute S = YA + YB + YC

Now,

                A B C AA BA CA AB BB CB AC BC CCS Y Y Y R R R R R R R R R

Rearranging, this becomes

                AA AB AC BA BB BC CA CB CC A B CS R R R R R R R R R D D D

	 1	 We are grateful to Daniel Goroff for this example.
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Then each participant can compute the mean which is simply S/3. This simple protocol can easily be adjusted 
to allow any number of participants to compute any linear function of their private data. Multiplying private 
values (e.g. computing a variance of private values) can also be done, but is significantly more complex, and 
requires different techniques (Ben-Or et al. 1988).

This example highlights an important feature of the security model of MPC: it does not protect against 
inferential disclosure. The above computation provably reveals no more information than revealing the 
mean alone, but the mean itself reveals information. A mean of three values is clearly highly dependent on 
the individual values, and thus the mean itself may reveal too much. This is described in more detail below. 
In cryptographic parlance, the random values RAA, RAB, RAC are “secret shares” of the private value DA and the 
distribution phase is called “secret sharing” (Blakley 1979; Shamir 1979). Secret sharing is a fundamental 
part of many MPC protocols, and despite its name, secret sharing does not reveal secrets, instead it provides 
a means of distributing secret data among participants such that no individual participant retains any infor-
mation about the secret, but collectively they can reconstruct the secret.

Open algorithms and provable security: MPC provides a means of replacing a trusted broker with a 
cryptographic algorithm. Because MPC is technically complex, it is sometimes viewed as a sort of crypto-
graphic “black-box”, but if data owners are asked to replace their mutual trust in a broker with a mutually 
trusted algorithm, has the need for trust really gone down? In fact, using MPC for secure computation does 
not require blind trust in the algorithms and implementation. Existing MPC protocols are all based on 
public, published algorithms. These algorithms have mathematical proofs of security, and have been widely 
reviewed and analyzed by the cryptographic community. Because the algorithms underlying MPC are open, 
data owners are not forced to use software provided by a single vendor. Just as researchers can use standard-
ized email protocols to send emails back and forth while using different mail clients and even operating 
systems, data owners can use public MPC protocols to perform secure computations on private data using 
software clients provided by different vendors. Security conscious data owners could, in principle, write 
their own MPC software clients, thus completely eliminating the need to trust any external software vendors 
or cryptographers. Alternatively, data owners could use open-source implementations of MPC protocols 
thus allowing each participant to independently verify the specific algorithms and implementations being 
used. It is precisely this openness that makes MPC a useful tool in reducing the need for mutual trust and 
eliminating trusted broker as an additional source of vulnerability. MPC does not provide “security through 
obscurity”; it provides security through mathematics.

B. What MPC is not
Differential privacy: MPC provides a means for a group of data owners to perform computations on their 
private data in such a way that performing the computation reveals no more information than the output 
alone would reveal. There are some situations, however, where the output alone reveals too much. In the 
example above, if three data owners securely compute the mean of their private values, the mean itself 
reveals a significant amount of information even when the sample size is larger. For example, calculating 
the mean wealth of residents in Medina, WA would reveal significant information about Bill Gates’s for-
tune (Jones 2005). Even statistics that were deemed to be “anonymized” may reveal too much information 
about the underlying data sets (Heffetz & Ligett 2013). Protecting against problems of inferential disclosure 
requires alternative methods known as Differential Privacy, which usually involve adding noise to the data 
(Dwork 2008). Because MPC does not attempt to solve the problem of inferential disclosure, securely com-
puting statistics using MPC yields exact results, not approximations. These are inherently complementary 
problems in privacy: MPC solves the problem of computing without leaking information, and differential 
privacy solves the problem of disclosing results without leaking information. Because MPC protocols can be 
used to securely compute any function, MPC protocols could be used to implement any rule-based mecha-
nism to protect against inferential disclosure. For example, MPC could be used to compute cross-tabulations 
on private data, but only for those cells that have at least (say) ten observations. Similarly, MPC could be used 
to securely implement any differentially private mechanism (see e.g. (Pettai & Laud 2015)), and this combi-
nation would protect against information leakage from both the computation and the final result.

Record linkage: MPC provides a means of securely computing statistics on separate, private data sets. 
Computing statistics across multiple databases (even without privacy) requires a method for linking records 
in one database to another. For example, suppose a researcher wanted to examine connections between 
income and scholastic achievement, but education records are in a database held by the department of edu-
cation, whereas income records are held by the IRS. If the education database has columns “social security 
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number” and “test score,” and the IRS database has columns “social security number” and “household 
income,” then linking the data sets (without privacy) is straightforward. In many real-world scenarios, how-
ever, linking records may be much more complex. The problem of identifying the correct way to link records 
across databases is not a question of privacy, and is not addressed by MPC technology. If researchers have a 
method for linking records across databases without privacy, MPC can perform the linkage (and subsequent 
statistical analysis) with privacy, but MPC cannot identify the “correct” way to link records across databases. 
Throughout the discussion below, we will always assume that vertically partitioned databases include a sin-
gle column that provides a simple and natural way of linking records (e.g. a social security number or other 
unique identifier).

Clean data: Statistical research requires clean, consistent data sets, and most research projects devote 
significant time and resources to clean data before analysis begins. Statistics involving multiple data sets 
require additional care to ensure that the different databases are coded consistently, having uniform vari-
able (column) names and variable types. Preparing data sets for analysis can be time consuming, but it is 
not a problem addressed by MPC. In the MPC use-cases outlined below, we assume the data owners have 
worked to ensure that their data sets are uniform and consistent before embarking on any secure statisti-
cal analyses. Thus data owners must mutually agree on things like column names and variable types before 
invoking MPC.

C. Previous applications of MPC
MPC has been proposed as a method for achieving financial oversight (Abbe et al. 2012; Flood et al. 2013), 
and general scientific calculations (Du et al. 2004; Lindell & Pinkas 2009; Wenliang Du et al. n.d.). Although 
cryptographers have touted the potential benefits of MPC for decades, early MPC protocols imposed such a 
computational burden on the participants as to be impractical for most real-world applications. The steady 
increase in computing power coupled with considerable algorithmic improvements have led to many real-
world tests of MPC over the past few years. See (Archer et al. 2016) for a survey of the computational effi-
ciency of modern MPC protocols.

The first major deployment of MPC was in an auction for Danish sugar beet production contracts (Bogetoft 
et al. 2009). In this application, each farmer had a (private) bid, and the MPC protocol securely computed 
the market clearing price, and allocated production rights to farmers. In this case, the MPC eliminated the 
need for a trusted auctioneer. Since then, MPC has been used for genome-wide association studies (Kamm 
et al. 2013; Jagadeesh et al. 2017; Cho et al. 2018), financial analytics (Bogdanov et al. 2012; Lapets et al. 
2018), tax-fraud detection (Bogdanov, Jõemets, et al. 2016), identifying sexual offenders (Rajan et al. 2018) 
and preventing satellite collisions (Kamm & Willemson 2014; Hemenway et al. 2016). The Obliv-C framework 
(Zahur & Evans 2015) has been used for linear regression (Gascón, Schoppmann, Borja Balle, et al. 2017) and 
matching algorithms (Doerner et al. 2016). Nevertheless, MPC has not yet achieved its full potential, and the 
technology is not widely known outside of the cryptographic community.

III. Use cases and scenarios
One of the primary technical barriers to the widespread adoption of MPC technology has been the computa-
tional complexity of the MPC protocols themselves. Using MPC for a secure computation, without appropri-
ate engineering considerations, might be thousands of times slower than performing the same computation 
insecurely. Thus MPC may be a viable solution for “simple” calculations, while it is currently of little value 
for securely computing extremely complex functionalities. In most situations, waiting milliseconds instead 
of nanoseconds to compute a set of regression coefficients is likely an acceptable tradeoff, whereas waiting 
years instead of days for the result of a more complex calculations is almost certainly unacceptable. As we 
build towards implementing a full suite of secure statistical tests, we will work in order of increasing com-
plexity, starting from statistics that are almost certainly simple enough to admit efficient MPC implementa-
tions and gradually building towards more complex statistics that are closer to the limits of what can be 
computed efficiently using MPC.

A. Descriptions of data
We propose using MPC to allow researchers to perform statistical analyses across multiple data sets, where 
the data owners are unwilling or unable to share the underlying data sets with researchers or each other. 
Throughout this work, we imagine data sets as tables, where rows correspond to observations, and columns 
correspond to variables. Figure 1 shows different ways data may be partitioned across multiple databases.
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Horizontally partitioned data: We use the term horizontally partitioned to denote the situation where 
two (or more) data owners have collected the same data from different subjects. Thus the data sets could 
be viewed as one large data set that was split horizontally. An example of a horizontal partitioning could 
be two different school districts, each of which collected information like age, classroom and test scores for 
students in their district.

Vertically partitioned data: We use the term vertically partitioned to denote the situation where data 
owners have different information about the same subjects. An example of a vertical partitioning could be 
joining education records (held by the school district) with health records (held by the medical provider). In 
this example, the school district may have information about an individual’s scholastic aptitude, while the 
medical provider has information about the same individual’s health.

Complex data partitions: There are also scenarios where the data are not simply vertically or horizon-
tally partitioned, but instead are joined by a more complex relationship.

B. Examples
Health: In the U.S. it is common to change health insurers when changing schools, jobs or moving out of 
state. Although each insurer may keep detailed records about its clients, the data as a whole will be horizon-
tally partitioned among the different insurers. Longitudinal studies are often stymied by a variety of regula-
tions or privacy concerns.

Business & Finance: In the financial setting, each financial institution may have only a local view of its 
investments and risks. This inability to see the “big picture” can hinder oversight and lead to systemic risks 
that contribute to overall instability in the financial network or a supply chain within an industry (e.g. the 
effects of General Motors on the automotive industry and suppliers downstream). A data set where each row 
corresponds to the state of the financial network at a given point in time would then be vertically partitioned 
among financial institutions or regulatory agencies.

Social welfare: Researchers and policy-makers are routinely faced with decisions that require analyzing 
data from multiple domains. For example, examining how changes in the penal code impact truancy might 
require combining data from the judicial system and the schools. Or, examining how changes to the food 
stamp program impact obesity rates might require combining SNAP data with data from local health clinics. 
In most of these situations, the data will be vertically partitioned, with different entities holding different 
data about each individual in the population.

Education: Designing an efficient and effective education system is crucial for the long-term health, 
happiness and productivity of the population. On the other hand, the sensitive nature of data relating to 
children make fine-grained education data difficult to obtain and distribute. Comparing how policy-changes 
(e.g. changes to the tax code, penal code, welfare programs or Medicaid) impact student learning might 
require analyzing vertically partitioned data sets, whereas detailed statistics about the population of stu-
dents (encompassing public schools, private schools and charter schools) might require analyzing horizon-
tally partitioned data. MPC has already been used to link student and tax records in order to examine the 
effects of employment on academic performance (Bogdanov, Kamm, et al. 2016).

Figure 1: Different partitions of data ownership within a database.
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C. Statistics
Descriptive statistics: Some of the most useful and widely used statistics are also the simplest, and the 
first task for designing an MPC-based software suite will be to implement secure versions of basic descriptive 
statistics. These include means, variances, covariances and cross-tabulations (e.g. means by category). These 
statistics can all be expressed as polynomials of degree at most two, and thus are extremely amenable to 
secure computation. Slightly more complicated model-based statistics, like least squares, generalized least 
squares, and k-means clustering can also be implemented within an MPC protocol without too much extra 
computational overhead.

Multiple regression: Multiple (linear) regression is only slightly more computationally complex than 
descriptive statistics. The regression coefficients can be expressed as (XTX)−1XTY, where X is the matrix of 
independent variables, and Y is the matrix of dependent variables. No matter, how the data (X and Y) are 
partitioned, the regression coefficients could be computed by first secret-sharing X and Y, and then com-
puting the above statistic using a generic MPC framework.2 The most computationally difficult step in this 
procedure is the inversion of the matrix XTX. In most real-world scenarios, however, the matrix X has only a 
small number of columns (i.e., the regression uses only a small number of predictors), thus the matrix XTX 
will be small even if the total number of observations is large. Thus, the secure computation of a matrix 
inversion needs to only calculate the inverse of a small matrix. Because of this fact, the bottleneck in per-
formance of the MPC solution will most likely be in the communication since the matrix X may have many 
rows (observations).

Logistic regression: Logistic regression is more computationally complex than linear regression, and 
unlike linear regression there is no completely general closed-form solution for performing a logistic 
regression. In practice, logistic regression algorithms are iterative, which will impact the design of MPC 
protocols. Although there are many methods for computing a logistic regression, the method of iteratively 
reweighted least squares (IRLS) seems like it will be the most amenable to secure computation. Using IRLS 
to compute a logistic regression should require no more than ten iterations, where each iteration is essen-
tially a (weighted) linear regression calculation. Thus using IRLS allows us to leverage the (secure) linear 
regression routines outlined above and compute logistic regressions with about ten-fold slowdown over 
(secure) linear regression.

Survival analysis: Moving up a level in complexity, we come to survival analysis algorithms, like the 
Cox Proportional Hazards Model (Cox 1972). These statistics are widely used, and are of specific interest in 
the health-care use cases outlined above. Calculating a Cox model requires first sorting the data, and then 
performing an iterative optimization algorithm. Secure sorting is itself a well-studied task (Jónsson et al. 
2011; Hamada et al. 2013), and most secure sorting is based on sorting networks (Batcher 1968). Even after 
(securely) sorting the data, optimizing the objective function requires a relatively complex secure calcula-
tion, e.g. Newton’s Method. It is an interesting empirical question whether MPC protocols can be made to 
implement survival analysis algorithms like the Cox model efficiently enough for practical applications.

More complex statistics: Creating an MPC platform that could securely compute arbitrarily complex statis-
tics (e.g. full Bayesian inference on completely general models) would be of great benefit to the community. 
Given the wide variety of statistics that researchers would like to compute, in order to address this problem, 
better tools for compiling general statistical algorithms into MPC protocols need to be developed. In recent 
years, however, significant progress has been made in MPC compilers (Aly et al. n.d.; Zhang et al. 2013; Wang 
et al. 2017). Although these compilers can be used to run arbitrary computations, the cryptographic require-
ments of the MPC protocols mean that the most efficient (insecure) algorithms for calculating a statistic 
of interest, may not be the most efficient algorithms to run within a secure computation (Esperança et al. 
2017). Finding the most “MPC-friendly” algorithm for computing statistics of interest will require collabora-
tions between statisticians and cryptographers.

D. Privacy assumptions
Collusion: When secure computations involve more than two participants, there is a risk that a subset 
of participants will collude in order to violate the privacy of other participants. For example, if a group of 
hospitals wanted to compute joint statistics about the overall rate of hospital acquired infections, could a 
subset of the hospitals collude, sharing information between themselves in order to gain more information 

	 2	 For specific data partitions (e.g. one participant holds X and the other holds Y, or a simple vertical or horizontal partitioning) further 
optimizations can be made.
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about one of their competitors? The problem of collusion is directly addressed by MPC protocols and there 
exist MPC protocols that are fully collusion resistant — even if all of the other participants collude against 
you, your private data will remain secure (Ishai et al. 2008; Keller et al. 2013). Collusion-resistance has a 
price, however, and protocols that are fully collusion resistant are more computationally intensive (and 
hence slower) than protocols that are not collusion resistant. A good rule of thumb, however, is that when 
the majority of participants are assumed to be non-colluding, MPC protocols can be much faster. Thus if 
there are five participants in a computation, providing privacy in the face of three colluding participants is 
much more difficult than only providing privacy against at most two colluding participants.3 In the use-cases 
outlined below, collusion is usually not a serious concern. It seems unlikely, say, that two school districts will 
collude together to steal sensitive information from a third.

Even when all the participants are honest, collusion-resistance can be important, as it protects individual 
participants against the negligence of others. For example, in a fully collusion-resistant protocol, if an adver-
sary broke into the systems of all the other participants, stole their data, and monitored all their communica-
tions, the adversary would still learn nothing about your private data.

Leakage: General-purpose MPC protocols are designed to leak no information that could not be inferred 
from the output alone. This is an extremely strong security guarantee, and in some situations by “leaking” 
additional information the protocols can be made significantly more efficient. As a simple example, suppose 
that two data owners wish to compute the mean of their combined data. If the owners are willing to first 
share the total number of records in their data sets, the secure computation will be much faster than if the 
number of observations must also remain private. If the number of records is shared, then the stakeholders 
can securely compute the sum of their private data and obtain the mean by dividing by the (public) number 
of records. If the number of records must remain private as well, then the division must be computed securely 
as well, which increases the computational complexity of the protocol. For a slightly more complex example, 
consider a statistical computation that is computed iteratively, e.g. a Cox proportional hazards model. In 
calculations like these, if the intermediate iterates can be made public, the secure computation can be made 
dramatically more efficient. In fact, in some cases, sharing intermediate values in a computation can elimi-
nate the need for MPC entirely (Lu et al. 2015). Determining what portions of the computation (if any) can 
be made public requires domain expertise, and identifying what leakage will yield performance gains in MPC 
requires cryptographic expertise, thus questions about leakage will require cross-disciplinary collaboration.

Threat models (passive vs active): Designing secure protocols requires carefully specifying the threat 
model, and MPC protocols can be divided into two categories depending on whether they provide passive 
or the stronger notion of active security.4 Passive security models a world where the participants in an MPC 
protocol follow the specifications of the protocol, but may try to glean information from any messages they 
receive. The passive security model effectively captures the scenario where a hacker or rogue employee gains 
access to a machine, monitors its communication and exfiltrates data, but (for fear of detection) does not 
otherwise interfere with the running of the system. A passively secure MPC protocol would ensure that even 
if the other participants were compromised in this way, your private data would remain safe. Actively secure 
protocols provide strong security guarantees even when participants actively try to subvert the protocol, 
possibly forging data or sending mal-formed messages in an attempt to gather information about other 
participants’ private data. Actively secure protocols ensure that your data remain safe no matter what the 
other participants do. Like everything else, this stronger security guarantee comes at a price, and actively 
secure protocols require more computation and communication than their passively secure counterparts. It 
is common to first develop and implement passively secure protocols, and once these protocols are in place 
and validated, then move to the stronger notion of active security.

IV. MPC architectures
There are many different ways MPC could be used to provide a means of securely computing statistics on 
jointly private data sets. In this section, we review three different MPC architectures and their implications 
for the data owners. In the following, a “cloud server” refers to a commodity cloud computing provider like 
Microsoft Azure, Amazon EC2 or Google’s Compute Engine. In all the solutions outlined below, there is no 
need to “trust” these cloud service providers, and they will never have access to the underlying data. This is 
an important point: even an attacker who had complete power to read all data stored by the cloud, and could 

	 3	 The amount of collusion is measured by the largest single block of colluding participants. Thus in a protocol with five participants, 
if two groups of two collude, that is still only a collusion of size two.

	 4	 In the cryptographic literature, passive security is often called security against semi-honest adversaries, or security in the honest-
but-curious model. Active security is often called security against malicious adversaries.
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view all incoming and outgoing traffic to the cloud, would provably learn nothing about any of the sensitive 
data. Using a cloud provider may be beneficial because MPC protocols are extremely computationally and 
bandwidth intensive, and offloading this burden to the cloud may alleviate some of the pressures on the data 
owners. The third solution outlined below does not make use of cloud providers, and will likely be the most 
desirable solution when data owners do not want an untrusted cloud provider to handle even encrypted data.

All of the scenarios outlined below could support an arbitrary number of data owners. Table 1 provides a 
brief summary of some of the characteristics of the three different architectures.

A. Single cloud
The data owners could employ a single cloud server to assist in the computation Figure 2. In this scenario, 
the data owners will make use of the power of fully homomorphic encryption (FHE) to allow the cloud to 
perform computations on their encrypted data (Gentry 2009). First, the data owners engage in a short MPC 
protocol to generate a public-key/private-key pair for a fully homomorphic cryptosystem. This protocol 
will leave each data owner with the resulting FHE public-key and a secret-sharing of the private-key. The 
public-key for the FHE scheme will allow each of the data owners to encrypt, but since none of the owners 
has the private-key, the only way an FHE ciphertext can be decrypted is if the data owners engage in a further 
MPC protocol to decrypt it. Using the public-key, each data owner will encrypt their private data set, cell-
by-cell, and upload the encrypted data to the cloud. The security of the FHE scheme guarantees that the 
cloud provider will learn the number of rows provided by each of the data owners and nothing else. Once 
the cloud provider is in possession of the encrypted data sets, a researcher can make a statistical query to 
the cloud (e.g. compute the mean of a certain column), and using the power of the FHE scheme, the cloud 
can compute an encryption of the answer. Because the data are never decrypted, even the cloud itself cannot 
learn the answer to the researcher’s query. Finally, the cloud will provide the encrypted result to the data 
owners, and the data owners will engage in a short MPC protocol (using their shares of the decryption key) to 
decrypt the ciphertext containing the result of the researcher’s query. The PALISADE FHE library recognizes 
the utility of this model and provides wrapper-functions for multiparty key generation and decryption, that 
interface with all of its different FHE back-end implementations (Ryan & Rohloff n.d.).

This model has been suggested for privately tallying votes (Damgård et al. 2003). In the voting context, a 
set of authorities would engage in a distributed key generation protocol to generate the public key for an 
additively homomorphic cryptosystem, and the stakeholders would keep shares of the private key. Voters 
could encrypt their votes (using the public key), and these votes could be privately tallied (using the additive 

Table 1: MPC architectures.

Model Trust 
Requirements

Performance Involvement of 
data owners

Scalability with number 
of data owners

Single cloud Low Low Low Good

Multiple cloud 
providers

Medium High Low Good

Private servers Low Medium High Bad

Figure 2: Data owners send (encrypted) data to the computation server, the server performs the computa-
tion, and returns (encrypted) results. In this protocol, the server learns nothing about the underlying data. 
The computational burden on the data owners does not increase as the complexity of the computation 
increases.
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homomorphism). Finally, the authorities could engage in an MPC to decrypt the ciphertext containing the 
cumulative result. In the voting context, because the function is linear (summing the votes) this protocol 
can be made very efficient.5

Because the MPC protocol is only used for key generation and decryption, the cost of the MPC protocol 
does not increase with the data size or the complexity of the underlying statistics of interest. This means that 
the efficiency of the underlying MPC protocol will most likely not be the determining factor in the efficiency 
of the overall protocol.

Security guarantees: In the single-cloud model, researchers can make statistical queries to the cloud 
server without involving the data owners, but because the results are decrypted, the researcher (and the 
cloud) can never learn the answer to any of these queries without involving the data owners. Thus the data 
owners maintain complete control over what queries are answered, and who sees the answers. Because the 
underlying data are never decrypted, there is no risk that the cloud could learn any information about the 
underlying data sets or leak this information through its negligence.

Efficiency considerations: Currently, FHE technology is less efficient than other MPC solutions, so this 
single-cloud scenario, will be more computationally intensive than the other solutions outlined below. Using 
state-of-the-art FHE schemes, this type of architecture should be able to provide a method for efficiently 
computing descriptive statistics (e.g. means, variances, covariances, crosstabs), but the computational bur-
den may be too great to compute more complicated statistics like multiple regressions on large data sets. For 
example, using FHE to compute a linear regression on a small data set (200 observations and 20 variables) 
took about three hours of computation time (Lu et al. 2017). Although this architecture places an extremely 
high computational burden on the cloud provider, it has benefits for the data owners. The computational 
burden on the data owners is minimal and once the encrypted data sets are sent to the cloud, researchers 
can make any number of statistical queries with minimal communication costs. Of the three architectures 
proposed in this section, this one has the highest computational cost, but the lowest communication cost.

B. Multiple cloud providers
Instead of employing a single cloud provider, the data owners could employ multiple cloud servers to assist 
them in their secure computations Figure 3. Employing two cloud servers allows them to use Yao’s garbled 
circuits (Yao 1982; Yao 1986), or the GMW protocol (Goldreich et al. 1987). Employing three (or more) cloud 
servers allows them to use the GMW or BGW protocols (Ben-Or et al. 1988). In this scenario, the data owners 
would use secret sharing to distribute their data among the cloud providers. The security of the secret sharing 
protocol, ensures that each cloud server learns no information about any of the underlying data sets. Once 
the sensitive data sets are secret shared to the cloud servers, a researcher could engage in an MPC protocol 

	 5	 The naïve protocol described here does not address many of the primary key challenges in the voting context which revolve around 
authenticating voters, preventing double-voting, and proving to a voter that her vote was indeed included in the final tally. These prob-
lems can be addressed using cryptography, and many different special-purpose protocols have been devised. See e.g. (Groth 2005).

Figure 3: The data owners “secret-share” their data among a small number of computation servers. The serv-
ers execute an MPC protocol and return the result (or encryptions of the result) to the data owners (or an 
analyst). In this model, the data owners must trust the computation servers not to collude. If the servers 
do not collude, then the servers learn nothing about the data (or nothing beyond what is revealed by the 
output of the computation alone if the result is returned in the clear). The computational burden on the 
data owners does not increase as the complexity of the computation increases.
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to calculate statistics on the aggregate data sets. Each cloud server would have its own MPC software client, 
and performing the MPC calculation would require computation and communication between the cloud 
servers. Finally, the result would be returned to the researcher. This architecture has the flexibility to allow 
the result of the computation to be returned directly to the researcher, or to the data owners. In the former 
case, the data owners might specify a certain set of “legal” statistical tests, and then they would not need 
to interact directly with researchers who wanted to perform tests from this category. In the latter case, the 
data owners would have to explicitly “ok” each result before it was returned to the researcher. For efficiency 
reasons, the three cloud scenario is extremely popular in implementations.6

Security guarantees: In the multi-cloud scenario, there is a risk that all the cloud providers will collude 
together to learn information about the private data. If all of the cloud servers collude against the data 
owners, all privacy is lost. This type of scenario can be mitigated by choosing cloud servers from different 
vendors, under the assumption that it is extremely unlikely that Microsoft, Amazon and Google (or their 
rogue employees) will join together to collude against the data owners. If at least one cloud server refuses to 
collude against the data owners, then complete privacy can be maintained. As discussed above, the higher 
the threshold for collusion-tolerance, the more inefficient the MPC protocol becomes. Protocols in which 
strictly fewer than half of the cloud servers collude against the data owners are generally the most efficient.

Efficiency considerations: By secret sharing their data to multiple cloud providers, the data owners can 
offload essentially all of the computational burden of MPC to the cloud providers. Unlike the single-cloud 
scenario above, in the multi-cloud scenario every statistical query will require large amounts of communi-
cation between the cloud servers. In most situations, cloud providers have extremely fast network connec-
tions, and so the communication burden between the clouds may not be a bottleneck. As a performance 
baseline, a three-server implementation of linear regression using the Sharemind platform was used to 
compute a linear regression with 10k observations and 10 variables in 12 seconds (Bogdanov et al. 2018). 
Two-server, garbled-circuit implementations of regression have run computations with millions of observa-
tions (Nikolaenko et al. 2013; Gascón, Schoppmann, Balle, et al. 2017).

C. Private servers
In order to maintain complete control over their data sets, data owners can eliminate the cloud servers and 
perform the MPC protocol themselves. Eliminating the cloud servers reduces the attack surface, but places 
much larger computational burden on the data owners themselves. In this model, each data owner (and 
possibly the researcher) will maintain an in-house networked server (Figure 4). This server will contain the 
data owner’s private data set, and will run the MPC client software. As discussed above, because the MPC 
algorithms are public, the data owners could, in principle, purchase their MPC client software from different 
vendors or each write their own MPC software client. When a researcher wants to calculate a statistic, the 
data owners’ servers will engage in the MPC protocol, and obtain the result, which can then be relayed to the 
researcher.

	 6	 The three-cloud environment is the basis of the Sharemind platform, and all of their MPC use-cases (https://sharemind.cyber.ee/).

Figure 4: The data owners play the role of computation servers, and each data owner installs and runs the 
MPC client software locally. In this model, the data owners no longer have to trust the computation servers 
not to collude. On the other hand, the this increases the computational (and communication) burden of 
the data owners who must now execute the MPC protocol themselves. Since all data owners must now 
communicate with all other data owners, the communication cost of this architecture does not scale to 
support a large number of data owners.

https://sharemind.cyber.ee/
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Security guarantees: In the private-server model, none of the data owners (or their MPC software clients) 
ever accesses anyone else’s private data, the only threat to data security is collusion among the data owners 
(i.e., some subset of owners works together to steal data from another participant). As discussed above, MPC 
protocols exist which provide privacy even if all other data owners collude against one target owner. If such 
a protocol is used, then no assumptions about collusion are necessary to ensure data privacy. For efficiency 
reasons, however, it may be necessary to design protocols that only provide privacy when the majority of 
data owners are non-colluding.

Efficiency considerations: This architecture imposes the largest computational burden on the data own-
ers themselves, and in this scenario the data owners will most likely each have to assign a dedicated server 
to perform the MPC computation. Because the MPC protocols are extremely bandwidth intensive, for this 
solution to be practical, the data owners’ servers must be connected with high-bandwidth, low-latency net-
work connections. In this architecture, all data owners (or their software clients) must send messages to all 
others, the overall communication cost of the protocol grows quadratically with the number of data owners. 
By contrast, in the two protocols discussed above (“single server” and “multiple cloud providers”) the total 
communication cost only grows linearly with the number of data owners. Thus, this model may be impracti-
cal when the number of data owners is large. For reference, the largest MPC computation to date had 128 
participants (Wang et al. 2017).

V. Possibilities and Frontiers
A. Integration with differential privacy
MPC does not attempt to address the problem of inferential disclosure. The outputs of an MPC protocol are 
exact, and the security guarantee is that all the messages exchanged in the MPC protocol during computa-
tion of the output reveal no more information than what is revealed by the output alone. On the other hand, 
MPC protocols are extremely general, and in principle MPC can be used to securely compute any functional-
ity — including a differentially private one. Moving forward, we imagine building systems that integrate MPC 
with differential privacy to ensure that neither the computation, nor the final output violate individual pri-
vacy. Integrating MPC and differential privacy is an extremely natural goal, and this integration has been pro-
posed (Flood et al. 2013) and prototyped (Narayan et al. 2014) in the context of overseeing financial markets.

B. Certificates of correctness of computation
As discussed above, transparency and reproducibility are core tenets of the open science movement, as these 
provide a means for the scientific community to verify and validate each other’s work. Unfortunately, privacy 
concerns often prevent publicly sharing data sets, and this presents a barrier to transparency and reproduc-
ibility. A well-designed MPC solution provides a means for achieving reproducibility without sharing any of 
the underlying sensitive data. Data owners running MPC clients could essentially provide researchers with 
a virtual interface to their data sets, thus allowing future researchers to reproduce statistical calculations 
without the need for publicly posting the data sets.

Cryptography provides many additional tools to verify the correctness of computations without violating 
privacy. Using digital signatures, data owners could “sign” the output of a computation. Digital signatures 
could be easily integrated into a secure computation protocol, so that when computing (say) a linear regres-
sion, the secure computation yields both the regression coefficients as well as a digital signature from the 
data owners that attests that these regression coefficients were obtained from a specific computation on 
their data sets. More powerful tools like Succinct Non-interactive zero-knowledge ARguments of Knowledge 
(SNARKs) (Parno et al. 2013; Ben-Sasson et al. 2013) provide a means of “proving” that an entire calculation 
was carried out correctly. Using SNARKs, researchers would have a short, easily verifiable certificate that 
their statistics were obtained from specific computations on specific data sets. Thus, SNARKs provide a novel 
means of allowing the research community to verify and validate statistical computations, without actually 
reproducing the computations in the traditional sense. The cryptocurrency ZCash (Hopwood et al. 2018) 
uses SNARKs (based on the libsnark library (Lab n.d.)) to enhance user privacy.

C. Secret disclosure controls
To limit inferential disclosure and prevent linkage attacks, MPC protocols can be made to implement com-
plex mechanisms like differential privacy, or simple mechanisms like pruning outliers or suppressing the 
output of calculations that do not depend on enough records. In some situations, however, the disclosure 
control rules themselves must remain private. This can occur when the database deals with classified mate-
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rials, and a user without proper clearance should not be able to identify which types of queries are being 
censored. IARPA’s SPAR program7 sought to develop and implement protocols that allowed users to query a 
database privately, while simultaneously enforcing query policy compliance. The SPAR program was primar-
ily concerned with SELECT queries (e.g. SELECT name, occupation WHERE age > 35), whereas we envision 
supporting statistical queries, so the SPAR technology cannot be used as-is. Although in many applications 
there is no need to maintain the privacy of the disclosure control mechanisms themselves, MPC has the 
ability to provide this strong notion of privacy, and thus is potentially useful in settings that demand even 
more privacy.

VI. MPC Software
A number of open-source software “compilers” have been developed that allow users to write code in a high-
level language that will then be executed as a secure multiparty computation. These tools make it much 
easier to prototype and deploy MPC computations, however, they still require some cryptographic exper-
tise to use and deploy. These compilers are academic software projects and not “enterprise-ready” software. 
Table 2 shows a few of the most efficient, usable and actively developed open-source MPC compilers.

Many other compilers exist, but these are currently some of the most efficient, usable and actively devel-
oped. Docker containers containing working examples for these (and other) MPC compilers can be found 
online.14 Several libraries for Fully Homomorphic Encryption have also been developed, including HElib,15 
PALISADE16 and SEAL.17

VII. Conclusion
MPC technology is now sufficiently advanced to be an efficient and practical method for certain types 
of statistical calculations. This paper serves to identify and outline some of the cryptographic tools that 
would most empower researchers, satisfy the privacy requirements of data owners, and builds a roadmap of 
approaches to meeting these requirements that can be implemented by cryptographers.

In the near future, we expect to see many novel real-world applications of MPC supporting scientific 
research. To expedite this process, we have laid out a skeleton of the types of statistical techniques and MPC 
protocols that are most likely to be of use this in this arena. Developing the most promising use-cases and 
building practical and efficient MPC protocols to support these use-cases will require collaboration between 
cryptographers and data scientists.

	 7	 IARPA’s Security and Privacy Assurance Research (SPAR) program was active from 2011-2014. http://www.iarpa.gov/index.php/
research-programs/spar (accessed 03/09/2015).

	 8	 https://homes.esat.kuleuven.be/~nsmart/SCALE/.
	 9	 The “covert” security model is slightly weaker than a fully malicious security model. In the malicious model, users are explicitly 

prevented from deviating from the prescribed protocol by the protocol itself. In the covert security model users can cheat, but if 
they deviate from the protocol, other users will be able to see (and later prove) that the user cheated. Thus cheating users can be 
caught and penalized outside of the protocol itself (e.g. by legal means).

	 10	 https://github.com/PICCO-Team/picco.
	 11	 https://github.com/emp-toolkit.
	 12	 https://oblivc.org/.
	 13	 https://github.com/encryptogroup/ABY.
	 14	 https://github.com/MPC-SoK/frameworks.
	 15	 https://shaih.github.io/HElib/.
	 16	 https://git.njit.edu/palisade/PALISADE.
	 17	 https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/.

Table 2: MPC compilers.

System Number of parties Security model Function Language

SCALE-MAMBA8 2+ Covert9 Python-like

PICCO10 3+ Semi-honest C

EMP-Toolkit11 2+ Semi-honest or Malicious C

Obliv-C12 2 Semi-honest C

ABY13 2 Semi-honest C++

http://www.iarpa.gov/index.php/research-programs/spar
http://www.iarpa.gov/index.php/research-programs/spar
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://github.com/PICCO-Team/picco
https://github.com/emp-toolkit
https://oblivc.org/
https://github.com/encryptogroup/ABY
https://github.com/MPC-SoK/frameworks
https://shaih.github.io/HElib/
https://git.njit.edu/palisade/PALISADE
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
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One of the primary goals of this paper is to begin building bridges between these two communities 
that will lead to new opportunities to extract useful information from the wealth of data being collected 
by governments and the private sector without compromising the privacy of individuals or corporations. 
An MPC system for statistical analysis will thusly unleash the potential of enormous quantities of data that 
are currently restricted by confidentiality, privacy, and secrecy concerns.
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