
CODATACODATA
II
SS
UU

Alter, G, et al. 2018. Computing Statistics from Private
Data. Data Science Journal, 17: 31, pp. 1–16. DOI:
https://doi.org/10.5334/dsj-2018-031

RESEARCH PAPER

Computing Statistics from Private Data
George Alter1, Brett Hemenway Falk2, Steve Lu3 and Rafail Ostrovsky4

1	Inter-University Consortium for Political Science Research (ICPSR), University of Michigan, US
2	Computer and Information Science Department, University of Pennsylvania, US
3	Stealth Software Technologies Inc., US
4	UCLA, work partially done while consulting for Stealth Software Technologies Inc., US
Corresponding author: Brett Hemenway Falk (fbrett@cis.upenn.edu)

In several domains, privacy presents a significant obstacle to scientific and analytic research,
and limits the economic, social, health and scholastic benefits that could be derived from
such research. These concerns stem from the need for privacy about personally identifiable
information (PII), commercial intellectual property, and other types of information. For exam-
ple, businesses, researchers, and policymakers may benefit by analyzing aggregate information
about markets, but individual companies may not be willing to reveal information about risks,
strategies, and weaknesses that could be exploited by competitors. Extracting valuable utility
from the new “big data” economy demands new privacy technologies to overcome barriers that
impede sensitive data from being aggregated and analyzed.

Secure multiparty computation (MPC) is a collection of cryptographic technologies that can
be used to effectively cope with some of these obstacles, and provide a new means of allowing
researchers to coordinate and analyze sensitive data collections, obviating the need for data-
owners to share the underlying data sets with other researchers or with each other. This paper
outlines the findings that were made during interdisciplinary workshops that examined potential
applications of MPC to data in the social and health sciences.

The primary goals of this work are to describe the computational needs of these disciplines and
to develop a specific roadmap for selecting efficient algorithms and protocols that can be used
as a starting point for interdisciplinary projects between cryptographers and data scientists.

Keywords: data; cryptography; privacy; federated data sets; distributed computing; encryption

I. Introduction: The need for statistics from private data
Tension between research and privacy: In many arenas privacy concerns pose a significant barrier to
scientific research and any ensuing economic, social and health benefits. Many privacy concerns stem from
personally identifiable information (PII). Detailed health records can help doctors and researchers improve
diagnosis and treatment, but at an individual level, these records contain extremely sensitive personal infor-
mation. Similarly, data-sets concerning student performance can help researchers and teachers identify and
implement successful pedagogical techniques, but the underlying data (which may contain detailed infor-
mation about children) must remain private. In other scenarios, privacy concerns may be economic rather
than personal. Businesses may stand to gain by analyzing aggregate information about their markets, cus-
tomers, risks etc., but the underlying data may contain information about each company’s costs, strategies
and weaknesses that could be exploited by competitors. For example, satellite operators often experience
“anomalies” which indicate a malfunction or complete loss of function of the satellite. Diagnosing these
anomalies is time and resource intensive, and the diagnosis could be streamlined if information were shared
between operators. Operators are unwilling to share anomaly information, however, as it often indicates a
business weakness that could be exploited by competitors (Galvan et al. 2014). In all these situations privacy
considerations pose obstacles that increase the cost, slow the pace, or completely prevent using the data to
their fullest.

https://doi.org/10.5334/dsj-2018-031
mailto:fbrett@cis.upenn.edu

Alter et al: Computing Statistics from Private DataArt. 31, page 2 of 16

These privacy concerns are only intensified as improved technology allows us to collect, store, transmit and
process data at an ever-increasing scale. But these technological improvements have done little to address
privacy concerns, and providing researchers with a means of securely and efficiently analyzing sensitive data
remains a problem. Extracting maximum utility from the new “big data” economy requires new techniques
to overcome privacy barriers that prevent sensitive data from being aggregated and analyzed.

Secure multiparty computation (MPC) is a cryptographic tool that can be used to overcome some of these
obstacles, and provides a means of allowing researchers to securely merge and analyze sensitive data sets,
without requiring data-owners to share the underlying data sets with researchers or each other.

To illustrate the power of MPC, we consider a simple, idealized example. Suppose a researcher wishes
to perform statistical tests on patient data held by multiple healthcare providers. In some situations, the
researcher may be able to negotiate a data-use agreement, allowing her access to each of the data sets in
question, but when privacy considerations prevent the data owners from sharing their data, there may be no
way to aggregate all the data into a single data set accessible to the researcher. Using MPC, the problem can
be resolved as follows: the researcher and the data owners will engage in a cryptographic protocol, exchang-
ing enciphered messages, with the guarantee that at the end of the protocol, the researcher will learn the
result of her statistical query (e.g. regression coefficients) as applied to the aggregation of the data held by
all the data owners, and nothing more. In this scenario, the data owners never need to share the underlying
data sets with anyone, instead cryptography provides a means of computing on private data without requir-
ing data-sharing.

In this report, we describe how existing MPC protocols work, and examine how these general purpose
cryptographic protocols can be applied to concrete problems of computing statistics on private data.

The need for real-time analysis: In addition to its strong privacy guarantees, MPC has other benefits
that improve upon existing methods for securely analyzing sensitive data. One example is the need for
real-time analysis. Currently, it can be difficult to use sensitive data to provide real-time analytics to support
decision making. A traditional workflow might involve a researcher requesting sensitive data from a data
owner, the data owner would then check the credentials of the researcher, anonymize and sanitize the data,
ship the sanitized data to the researcher, possibly review any summary statistics produced by the researcher
to determine whether they pose a disclosure risk. Each of these steps may require human interaction, and
the entire process can take weeks or months from the time when the researcher makes a request to the time
the sanitized data are received. This lag time eliminates the possibility of using these data for real-time deci-
sion making. MPC can streamline this entire process. Because using MPC for data analytics does not require
sharing the underlying data sets, data owners will not have to anonymize or de-identify their data before
engaging in an MPC protocol. (Data owners will, however, still be required to engage in non-privacy related
data cleaning procedures, e.g. outlier removal). Because MPC protocols are completely automatic, there is no
need for human interaction in the process, other than to agree on the statistics being computed.

Reproducibility and transparency: Open science requires that researchers make their methods and data
public so that results and conclusions can be independently verified and validated. This notion of open sci-
ence is at odds with privacy considerations, since a researcher, who has been granted access to a sensitive data
set, cannot simply publish the underlying data sets for others to see. MPC provides an alternative means of
transparency. Through the interface of MPC, data owners can provide other researchers with a secure means
of performing statistics on the sensitive data without sharing the underlying data themselves. This type of
secure interface could make it easier for researchers to reproduce, validate and extend each other’s work.

Understanding MPC – a cryptographic replacement for a “trusted broker”: In many scenarios, pri-
vacy obstacles can be overcome if an external broker, trusted by all stakeholders, can be found. The trusted
broker will aggregate the private data, perform computations, and report conclusions. This type of “trusted
broker” solution requires all data providers to identify and employ a jointly trusted entity. For example, in
order to prevent collisions between on-orbit satellites, some satellite operators employ Analytical Graphics
Incorporated (AGI) as a trusted broker. AGI runs the Space Data Association (Anon n.d.), where members
share their confidential orbital information with AGI, and AGI issues warnings and reports, but is contractu-
ally bound not to share the underlying data with any outside party. Similarly, the SCAlable National Network
for Effectiveness Research (SCANNER) (Anon n.d.) developed distributed statistical analysis infrastructure
to support hospitals build logistic regression model using locally aggregated statistics without exchanging
sensitive patient level data. In many situations, however, legal and trust issues may make finding a trusted
broker difficult or impossible. Even in situations where a mutually trusted broker can be found, employing
their services can be costly and exposes sensitive data to an additional threat if the trusted broker is hacked
and all sensitive data is stolen.

Alter et al: Computing Statistics from Private Data Art. 31, page 3 of 16

The trusted broker model provides a simple means of understanding the power of MPC. MPC can be viewed
as a way of replacing a trusted broker with cryptographic algorithms, eliminating the need for mutual trust
and the need to aggregate all the sensitive data in one place, making a single point of vulnerability. The
trusted broker analogy also provides a useful means of identifying use-cases where MPC might be applicable.
If the existence of a trusted broker would provide a means for securely computing statistics on sensitive
data, then MPC could do the same without requiring the existence of a trusted broker. On the other hand,
in situations where a trusted broker is insufficient to provide a completely secure solution, then MPC will
also be insufficient. For example, a trusted broker who securely computes statistics and simply provides the
results does not immediately solve the problem of inferential disclosure. This is discussed in detail in the
next section.

Efficiency considerations: MPC protocols incur a significant overhead in both communication and
computational costs compared to computing the same function insecurely. Different MPC architectures have
different performance characteristics, but historically, the efficiency concerns have hindered deployment of
MPC protocols. The cryptographic community has been working for decades to improve the performance of
MPC protocols, and today, although efficiency concerns are an issue, knowledge and usability of the software
are often bigger impediments to adoption.

II. MPC as a solution
A. What MPC is
A simple example — securely computing averages: Secure multiparty computation provides a means
for securely computing any computable function on private data without the data owners ever sharing
the data with each other or anyone else. At first glance, this appears to be an impossible guarantee. To
illustrate the mathematics behind MPC, we describe a simple MPC protocol that allows three data own-
ers to compute the mean of their private data.1 Call the data owners A, B, C and their (private) data DA,
DB, DC. At a high level, the protocol works as follows. Each participant A, B, C will generate completely
random numbers, sampled uniformly from a sufficiently large range (Rij). They will then distribute the
random values to the other participants, who will each add random numbers to their private values (DA,
DB, DC) to get enciphered values (YA, YB, YC). Finally, participants will combine the outputs of all local
computations to obtain the final global computation result. Because each participant only obtains ran-
domly generated values from the other participants, no information about each participant’s private
value is leaked.

The protocol to compute the mean consists of the following steps.

•	 Randomness generation
◦ A generates random values RAB and RAC and sets RAA = DA – RAB – RAC

◦ B generates random values RBA and RBC and sets RBB = DB – RBA – RBC

◦ C generates random values RCA and RCB and sets RCC = DC – RCA – RCB

•	 Distribution
◦ A sends RAB to B and RAC to C
◦ B sends RBA to A and RBC to C
◦ C sends RCA to A and RCB to B

•	 Computation
◦ A computes YA = RAA + RBA + RCA

◦ B computes YB = RAB + RBB + RCB

◦ C computes YC = RAC + RBC + RCC

•	 Reconstruction
◦ The players share YA, YB, YC with each other and (publicly) compute S = YA + YB + YC

Now,

                A B C AA BA CA AB BB CB AC BC CCS Y Y Y R R R R R R R R R

Rearranging, this becomes

                AA AB AC BA BB BC CA CB CC A B CS R R R R R R R R R D D D

	 1	 We are grateful to Daniel Goroff for this example.

Alter et al: Computing Statistics from Private DataArt. 31, page 4 of 16

Then each participant can compute the mean which is simply S/3. This simple protocol can easily be adjusted
to allow any number of participants to compute any linear function of their private data. Multiplying private
values (e.g. computing a variance of private values) can also be done, but is significantly more complex, and
requires different techniques (Ben-Or et al. 1988).

This example highlights an important feature of the security model of MPC: it does not protect against
inferential disclosure. The above computation provably reveals no more information than revealing the
mean alone, but the mean itself reveals information. A mean of three values is clearly highly dependent on
the individual values, and thus the mean itself may reveal too much. This is described in more detail below.
In cryptographic parlance, the random values RAA, RAB, RAC are “secret shares” of the private value DA and the
distribution phase is called “secret sharing” (Blakley 1979; Shamir 1979). Secret sharing is a fundamental
part of many MPC protocols, and despite its name, secret sharing does not reveal secrets, instead it provides
a means of distributing secret data among participants such that no individual participant retains any infor-
mation about the secret, but collectively they can reconstruct the secret.

Open algorithms and provable security: MPC provides a means of replacing a trusted broker with a
cryptographic algorithm. Because MPC is technically complex, it is sometimes viewed as a sort of crypto-
graphic “black-box”, but if data owners are asked to replace their mutual trust in a broker with a mutually
trusted algorithm, has the need for trust really gone down? In fact, using MPC for secure computation does
not require blind trust in the algorithms and implementation. Existing MPC protocols are all based on
public, published algorithms. These algorithms have mathematical proofs of security, and have been widely
reviewed and analyzed by the cryptographic community. Because the algorithms underlying MPC are open,
data owners are not forced to use software provided by a single vendor. Just as researchers can use standard-
ized email protocols to send emails back and forth while using different mail clients and even operating
systems, data owners can use public MPC protocols to perform secure computations on private data using
software clients provided by different vendors. Security conscious data owners could, in principle, write
their own MPC software clients, thus completely eliminating the need to trust any external software vendors
or cryptographers. Alternatively, data owners could use open-source implementations of MPC protocols
thus allowing each participant to independently verify the specific algorithms and implementations being
used. It is precisely this openness that makes MPC a useful tool in reducing the need for mutual trust and
eliminating trusted broker as an additional source of vulnerability. MPC does not provide “security through
obscurity”; it provides security through mathematics.

B. What MPC is not
Differential privacy: MPC provides a means for a group of data owners to perform computations on their
private data in such a way that performing the computation reveals no more information than the output
alone would reveal. There are some situations, however, where the output alone reveals too much. In the
example above, if three data owners securely compute the mean of their private values, the mean itself
reveals a significant amount of information even when the sample size is larger. For example, calculating
the mean wealth of residents in Medina, WA would reveal significant information about Bill Gates’s for-
tune (Jones 2005). Even statistics that were deemed to be “anonymized” may reveal too much information
about the underlying data sets (Heffetz & Ligett 2013). Protecting against problems of inferential disclosure
requires alternative methods known as Differential Privacy, which usually involve adding noise to the data
(Dwork 2008). Because MPC does not attempt to solve the problem of inferential disclosure, securely com-
puting statistics using MPC yields exact results, not approximations. These are inherently complementary
problems in privacy: MPC solves the problem of computing without leaking information, and differential
privacy solves the problem of disclosing results without leaking information. Because MPC protocols can be
used to securely compute any function, MPC protocols could be used to implement any rule-based mecha-
nism to protect against inferential disclosure. For example, MPC could be used to compute cross-tabulations
on private data, but only for those cells that have at least (say) ten observations. Similarly, MPC could be used
to securely implement any differentially private mechanism (see e.g. (Pettai & Laud 2015)), and this combi-
nation would protect against information leakage from both the computation and the final result.

Record linkage: MPC provides a means of securely computing statistics on separate, private data sets.
Computing statistics across multiple databases (even without privacy) requires a method for linking records
in one database to another. For example, suppose a researcher wanted to examine connections between
income and scholastic achievement, but education records are in a database held by the department of edu-
cation, whereas income records are held by the IRS. If the education database has columns “social security

Alter et al: Computing Statistics from Private Data Art. 31, page 5 of 16

number” and “test score,” and the IRS database has columns “social security number” and “household
income,” then linking the data sets (without privacy) is straightforward. In many real-world scenarios, how-
ever, linking records may be much more complex. The problem of identifying the correct way to link records
across databases is not a question of privacy, and is not addressed by MPC technology. If researchers have a
method for linking records across databases without privacy, MPC can perform the linkage (and subsequent
statistical analysis) with privacy, but MPC cannot identify the “correct” way to link records across databases.
Throughout the discussion below, we will always assume that vertically partitioned databases include a sin-
gle column that provides a simple and natural way of linking records (e.g. a social security number or other
unique identifier).

Clean data: Statistical research requires clean, consistent data sets, and most research projects devote
significant time and resources to clean data before analysis begins. Statistics involving multiple data sets
require additional care to ensure that the different databases are coded consistently, having uniform vari-
able (column) names and variable types. Preparing data sets for analysis can be time consuming, but it is
not a problem addressed by MPC. In the MPC use-cases outlined below, we assume the data owners have
worked to ensure that their data sets are uniform and consistent before embarking on any secure statisti-
cal analyses. Thus data owners must mutually agree on things like column names and variable types before
invoking MPC.

C. Previous applications of MPC
MPC has been proposed as a method for achieving financial oversight (Abbe et al. 2012; Flood et al. 2013),
and general scientific calculations (Du et al. 2004; Lindell & Pinkas 2009; Wenliang Du et al. n.d.). Although
cryptographers have touted the potential benefits of MPC for decades, early MPC protocols imposed such a
computational burden on the participants as to be impractical for most real-world applications. The steady
increase in computing power coupled with considerable algorithmic improvements have led to many real-
world tests of MPC over the past few years. See (Archer et al. 2016) for a survey of the computational effi-
ciency of modern MPC protocols.

The first major deployment of MPC was in an auction for Danish sugar beet production contracts (Bogetoft
et al. 2009). In this application, each farmer had a (private) bid, and the MPC protocol securely computed
the market clearing price, and allocated production rights to farmers. In this case, the MPC eliminated the
need for a trusted auctioneer. Since then, MPC has been used for genome-wide association studies (Kamm
et al. 2013; Jagadeesh et al. 2017; Cho et al. 2018), financial analytics (Bogdanov et al. 2012; Lapets et al.
2018), tax-fraud detection (Bogdanov, Jõemets, et al. 2016), identifying sexual offenders (Rajan et al. 2018)
and preventing satellite collisions (Kamm & Willemson 2014; Hemenway et al. 2016). The Obliv-C framework
(Zahur & Evans 2015) has been used for linear regression (Gascón, Schoppmann, Borja Balle, et al. 2017) and
matching algorithms (Doerner et al. 2016). Nevertheless, MPC has not yet achieved its full potential, and the
technology is not widely known outside of the cryptographic community.

III. Use cases and scenarios
One of the primary technical barriers to the widespread adoption of MPC technology has been the computa-
tional complexity of the MPC protocols themselves. Using MPC for a secure computation, without appropri-
ate engineering considerations, might be thousands of times slower than performing the same computation
insecurely. Thus MPC may be a viable solution for “simple” calculations, while it is currently of little value
for securely computing extremely complex functionalities. In most situations, waiting milliseconds instead
of nanoseconds to compute a set of regression coefficients is likely an acceptable tradeoff, whereas waiting
years instead of days for the result of a more complex calculations is almost certainly unacceptable. As we
build towards implementing a full suite of secure statistical tests, we will work in order of increasing com-
plexity, starting from statistics that are almost certainly simple enough to admit efficient MPC implementa-
tions and gradually building towards more complex statistics that are closer to the limits of what can be
computed efficiently using MPC.

A. Descriptions of data
We propose using MPC to allow researchers to perform statistical analyses across multiple data sets, where
the data owners are unwilling or unable to share the underlying data sets with researchers or each other.
Throughout this work, we imagine data sets as tables, where rows correspond to observations, and columns
correspond to variables. Figure 1 shows different ways data may be partitioned across multiple databases.

Alter et al: Computing Statistics from Private DataArt. 31, page 6 of 16

Horizontally partitioned data: We use the term horizontally partitioned to denote the situation where
two (or more) data owners have collected the same data from different subjects. Thus the data sets could
be viewed as one large data set that was split horizontally. An example of a horizontal partitioning could
be two different school districts, each of which collected information like age, classroom and test scores for
students in their district.

Vertically partitioned data: We use the term vertically partitioned to denote the situation where data
owners have different information about the same subjects. An example of a vertical partitioning could be
joining education records (held by the school district) with health records (held by the medical provider). In
this example, the school district may have information about an individual’s scholastic aptitude, while the
medical provider has information about the same individual’s health.

Complex data partitions: There are also scenarios where the data are not simply vertically or horizon-
tally partitioned, but instead are joined by a more complex relationship.

B. Examples
Health: In the U.S. it is common to change health insurers when changing schools, jobs or moving out of
state. Although each insurer may keep detailed records about its clients, the data as a whole will be horizon-
tally partitioned among the different insurers. Longitudinal studies are often stymied by a variety of regula-
tions or privacy concerns.

Business & Finance: In the financial setting, each financial institution may have only a local view of its
investments and risks. This inability to see the “big picture” can hinder oversight and lead to systemic risks
that contribute to overall instability in the financial network or a supply chain within an industry (e.g. the
effects of General Motors on the automotive industry and suppliers downstream). A data set where each row
corresponds to the state of the financial network at a given point in time would then be vertically partitioned
among financial institutions or regulatory agencies.

Social welfare: Researchers and policy-makers are routinely faced with decisions that require analyzing
data from multiple domains. For example, examining how changes in the penal code impact truancy might
require combining data from the judicial system and the schools. Or, examining how changes to the food
stamp program impact obesity rates might require combining SNAP data with data from local health clinics.
In most of these situations, the data will be vertically partitioned, with different entities holding different
data about each individual in the population.

Education: Designing an efficient and effective education system is crucial for the long-term health,
happiness and productivity of the population. On the other hand, the sensitive nature of data relating to
children make fine-grained education data difficult to obtain and distribute. Comparing how policy-changes
(e.g. changes to the tax code, penal code, welfare programs or Medicaid) impact student learning might
require analyzing vertically partitioned data sets, whereas detailed statistics about the population of stu-
dents (encompassing public schools, private schools and charter schools) might require analyzing horizon-
tally partitioned data. MPC has already been used to link student and tax records in order to examine the
effects of employment on academic performance (Bogdanov, Kamm, et al. 2016).

Figure 1: Different partitions of data ownership within a database.

Horizontally
Partitioned

Data

Vertically
Partitioned

Data

Complex
Data

Partition

Alter et al: Computing Statistics from Private Data Art. 31, page 7 of 16

C. Statistics
Descriptive statistics: Some of the most useful and widely used statistics are also the simplest, and the
first task for designing an MPC-based software suite will be to implement secure versions of basic descriptive
statistics. These include means, variances, covariances and cross-tabulations (e.g. means by category). These
statistics can all be expressed as polynomials of degree at most two, and thus are extremely amenable to
secure computation. Slightly more complicated model-based statistics, like least squares, generalized least
squares, and k-means clustering can also be implemented within an MPC protocol without too much extra
computational overhead.

Multiple regression: Multiple (linear) regression is only slightly more computationally complex than
descriptive statistics. The regression coefficients can be expressed as (XTX)−1XTY, where X is the matrix of
independent variables, and Y is the matrix of dependent variables. No matter, how the data (X and Y) are
partitioned, the regression coefficients could be computed by first secret-sharing X and Y, and then com-
puting the above statistic using a generic MPC framework.2 The most computationally difficult step in this
procedure is the inversion of the matrix XTX. In most real-world scenarios, however, the matrix X has only a
small number of columns (i.e., the regression uses only a small number of predictors), thus the matrix XTX
will be small even if the total number of observations is large. Thus, the secure computation of a matrix
inversion needs to only calculate the inverse of a small matrix. Because of this fact, the bottleneck in per-
formance of the MPC solution will most likely be in the communication since the matrix X may have many
rows (observations).

Logistic regression: Logistic regression is more computationally complex than linear regression, and
unlike linear regression there is no completely general closed-form solution for performing a logistic
regression. In practice, logistic regression algorithms are iterative, which will impact the design of MPC
protocols. Although there are many methods for computing a logistic regression, the method of iteratively
reweighted least squares (IRLS) seems like it will be the most amenable to secure computation. Using IRLS
to compute a logistic regression should require no more than ten iterations, where each iteration is essen-
tially a (weighted) linear regression calculation. Thus using IRLS allows us to leverage the (secure) linear
regression routines outlined above and compute logistic regressions with about ten-fold slowdown over
(secure) linear regression.

Survival analysis: Moving up a level in complexity, we come to survival analysis algorithms, like the
Cox Proportional Hazards Model (Cox 1972). These statistics are widely used, and are of specific interest in
the health-care use cases outlined above. Calculating a Cox model requires first sorting the data, and then
performing an iterative optimization algorithm. Secure sorting is itself a well-studied task (Jónsson et al.
2011; Hamada et al. 2013), and most secure sorting is based on sorting networks (Batcher 1968). Even after
(securely) sorting the data, optimizing the objective function requires a relatively complex secure calcula-
tion, e.g. Newton’s Method. It is an interesting empirical question whether MPC protocols can be made to
implement survival analysis algorithms like the Cox model efficiently enough for practical applications.

More complex statistics: Creating an MPC platform that could securely compute arbitrarily complex statis-
tics (e.g. full Bayesian inference on completely general models) would be of great benefit to the community.
Given the wide variety of statistics that researchers would like to compute, in order to address this problem,
better tools for compiling general statistical algorithms into MPC protocols need to be developed. In recent
years, however, significant progress has been made in MPC compilers (Aly et al. n.d.; Zhang et al. 2013; Wang
et al. 2017). Although these compilers can be used to run arbitrary computations, the cryptographic require-
ments of the MPC protocols mean that the most efficient (insecure) algorithms for calculating a statistic
of interest, may not be the most efficient algorithms to run within a secure computation (Esperança et al.
2017). Finding the most “MPC-friendly” algorithm for computing statistics of interest will require collabora-
tions between statisticians and cryptographers.

D. Privacy assumptions
Collusion: When secure computations involve more than two participants, there is a risk that a subset
of participants will collude in order to violate the privacy of other participants. For example, if a group of
hospitals wanted to compute joint statistics about the overall rate of hospital acquired infections, could a
subset of the hospitals collude, sharing information between themselves in order to gain more information

	 2	 For specific data partitions (e.g. one participant holds X and the other holds Y, or a simple vertical or horizontal partitioning) further
optimizations can be made.

Alter et al: Computing Statistics from Private DataArt. 31, page 8 of 16

about one of their competitors? The problem of collusion is directly addressed by MPC protocols and there
exist MPC protocols that are fully collusion resistant — even if all of the other participants collude against
you, your private data will remain secure (Ishai et al. 2008; Keller et al. 2013). Collusion-resistance has a
price, however, and protocols that are fully collusion resistant are more computationally intensive (and
hence slower) than protocols that are not collusion resistant. A good rule of thumb, however, is that when
the majority of participants are assumed to be non-colluding, MPC protocols can be much faster. Thus if
there are five participants in a computation, providing privacy in the face of three colluding participants is
much more difficult than only providing privacy against at most two colluding participants.3 In the use-cases
outlined below, collusion is usually not a serious concern. It seems unlikely, say, that two school districts will
collude together to steal sensitive information from a third.

Even when all the participants are honest, collusion-resistance can be important, as it protects individual
participants against the negligence of others. For example, in a fully collusion-resistant protocol, if an adver-
sary broke into the systems of all the other participants, stole their data, and monitored all their communica-
tions, the adversary would still learn nothing about your private data.

Leakage: General-purpose MPC protocols are designed to leak no information that could not be inferred
from the output alone. This is an extremely strong security guarantee, and in some situations by “leaking”
additional information the protocols can be made significantly more efficient. As a simple example, suppose
that two data owners wish to compute the mean of their combined data. If the owners are willing to first
share the total number of records in their data sets, the secure computation will be much faster than if the
number of observations must also remain private. If the number of records is shared, then the stakeholders
can securely compute the sum of their private data and obtain the mean by dividing by the (public) number
of records. If the number of records must remain private as well, then the division must be computed securely
as well, which increases the computational complexity of the protocol. For a slightly more complex example,
consider a statistical computation that is computed iteratively, e.g. a Cox proportional hazards model. In
calculations like these, if the intermediate iterates can be made public, the secure computation can be made
dramatically more efficient. In fact, in some cases, sharing intermediate values in a computation can elimi-
nate the need for MPC entirely (Lu et al. 2015). Determining what portions of the computation (if any) can
be made public requires domain expertise, and identifying what leakage will yield performance gains in MPC
requires cryptographic expertise, thus questions about leakage will require cross-disciplinary collaboration.

Threat models (passive vs active): Designing secure protocols requires carefully specifying the threat
model, and MPC protocols can be divided into two categories depending on whether they provide passive
or the stronger notion of active security.4 Passive security models a world where the participants in an MPC
protocol follow the specifications of the protocol, but may try to glean information from any messages they
receive. The passive security model effectively captures the scenario where a hacker or rogue employee gains
access to a machine, monitors its communication and exfiltrates data, but (for fear of detection) does not
otherwise interfere with the running of the system. A passively secure MPC protocol would ensure that even
if the other participants were compromised in this way, your private data would remain safe. Actively secure
protocols provide strong security guarantees even when participants actively try to subvert the protocol,
possibly forging data or sending mal-formed messages in an attempt to gather information about other
participants’ private data. Actively secure protocols ensure that your data remain safe no matter what the
other participants do. Like everything else, this stronger security guarantee comes at a price, and actively
secure protocols require more computation and communication than their passively secure counterparts. It
is common to first develop and implement passively secure protocols, and once these protocols are in place
and validated, then move to the stronger notion of active security.

IV. MPC architectures
There are many different ways MPC could be used to provide a means of securely computing statistics on
jointly private data sets. In this section, we review three different MPC architectures and their implications
for the data owners. In the following, a “cloud server” refers to a commodity cloud computing provider like
Microsoft Azure, Amazon EC2 or Google’s Compute Engine. In all the solutions outlined below, there is no
need to “trust” these cloud service providers, and they will never have access to the underlying data. This is
an important point: even an attacker who had complete power to read all data stored by the cloud, and could

	 3	 The amount of collusion is measured by the largest single block of colluding participants. Thus in a protocol with five participants,
if two groups of two collude, that is still only a collusion of size two.

	 4	 In the cryptographic literature, passive security is often called security against semi-honest adversaries, or security in the honest-
but-curious model. Active security is often called security against malicious adversaries.

Alter et al: Computing Statistics from Private Data Art. 31, page 9 of 16

view all incoming and outgoing traffic to the cloud, would provably learn nothing about any of the sensitive
data. Using a cloud provider may be beneficial because MPC protocols are extremely computationally and
bandwidth intensive, and offloading this burden to the cloud may alleviate some of the pressures on the data
owners. The third solution outlined below does not make use of cloud providers, and will likely be the most
desirable solution when data owners do not want an untrusted cloud provider to handle even encrypted data.

All of the scenarios outlined below could support an arbitrary number of data owners. Table 1 provides a
brief summary of some of the characteristics of the three different architectures.

A. Single cloud
The data owners could employ a single cloud server to assist in the computation Figure 2. In this scenario,
the data owners will make use of the power of fully homomorphic encryption (FHE) to allow the cloud to
perform computations on their encrypted data (Gentry 2009). First, the data owners engage in a short MPC
protocol to generate a public-key/private-key pair for a fully homomorphic cryptosystem. This protocol
will leave each data owner with the resulting FHE public-key and a secret-sharing of the private-key. The
public-key for the FHE scheme will allow each of the data owners to encrypt, but since none of the owners
has the private-key, the only way an FHE ciphertext can be decrypted is if the data owners engage in a further
MPC protocol to decrypt it. Using the public-key, each data owner will encrypt their private data set, cell-
by-cell, and upload the encrypted data to the cloud. The security of the FHE scheme guarantees that the
cloud provider will learn the number of rows provided by each of the data owners and nothing else. Once
the cloud provider is in possession of the encrypted data sets, a researcher can make a statistical query to
the cloud (e.g. compute the mean of a certain column), and using the power of the FHE scheme, the cloud
can compute an encryption of the answer. Because the data are never decrypted, even the cloud itself cannot
learn the answer to the researcher’s query. Finally, the cloud will provide the encrypted result to the data
owners, and the data owners will engage in a short MPC protocol (using their shares of the decryption key) to
decrypt the ciphertext containing the result of the researcher’s query. The PALISADE FHE library recognizes
the utility of this model and provides wrapper-functions for multiparty key generation and decryption, that
interface with all of its different FHE back-end implementations (Ryan & Rohloff n.d.).

This model has been suggested for privately tallying votes (Damgård et al. 2003). In the voting context, a
set of authorities would engage in a distributed key generation protocol to generate the public key for an
additively homomorphic cryptosystem, and the stakeholders would keep shares of the private key. Voters
could encrypt their votes (using the public key), and these votes could be privately tallied (using the additive

Table 1: MPC architectures.

Model Trust
Requirements

Performance Involvement of
data owners

Scalability with number
of data owners

Single cloud Low Low Low Good

Multiple cloud
providers

Medium High Low Good

Private servers Low Medium High Bad

Figure 2: Data owners send (encrypted) data to the computation server, the server performs the computa-
tion, and returns (encrypted) results. In this protocol, the server learns nothing about the underlying data.
The computational burden on the data owners does not increase as the complexity of the computation
increases.

Alter et al: Computing Statistics from Private DataArt. 31, page 10 of 16

homomorphism). Finally, the authorities could engage in an MPC to decrypt the ciphertext containing the
cumulative result. In the voting context, because the function is linear (summing the votes) this protocol
can be made very efficient.5

Because the MPC protocol is only used for key generation and decryption, the cost of the MPC protocol
does not increase with the data size or the complexity of the underlying statistics of interest. This means that
the efficiency of the underlying MPC protocol will most likely not be the determining factor in the efficiency
of the overall protocol.

Security guarantees: In the single-cloud model, researchers can make statistical queries to the cloud
server without involving the data owners, but because the results are decrypted, the researcher (and the
cloud) can never learn the answer to any of these queries without involving the data owners. Thus the data
owners maintain complete control over what queries are answered, and who sees the answers. Because the
underlying data are never decrypted, there is no risk that the cloud could learn any information about the
underlying data sets or leak this information through its negligence.

Efficiency considerations: Currently, FHE technology is less efficient than other MPC solutions, so this
single-cloud scenario, will be more computationally intensive than the other solutions outlined below. Using
state-of-the-art FHE schemes, this type of architecture should be able to provide a method for efficiently
computing descriptive statistics (e.g. means, variances, covariances, crosstabs), but the computational bur-
den may be too great to compute more complicated statistics like multiple regressions on large data sets. For
example, using FHE to compute a linear regression on a small data set (200 observations and 20 variables)
took about three hours of computation time (Lu et al. 2017). Although this architecture places an extremely
high computational burden on the cloud provider, it has benefits for the data owners. The computational
burden on the data owners is minimal and once the encrypted data sets are sent to the cloud, researchers
can make any number of statistical queries with minimal communication costs. Of the three architectures
proposed in this section, this one has the highest computational cost, but the lowest communication cost.

B. Multiple cloud providers
Instead of employing a single cloud provider, the data owners could employ multiple cloud servers to assist
them in their secure computations Figure 3. Employing two cloud servers allows them to use Yao’s garbled
circuits (Yao 1982; Yao 1986), or the GMW protocol (Goldreich et al. 1987). Employing three (or more) cloud
servers allows them to use the GMW or BGW protocols (Ben-Or et al. 1988). In this scenario, the data owners
would use secret sharing to distribute their data among the cloud providers. The security of the secret sharing
protocol, ensures that each cloud server learns no information about any of the underlying data sets. Once
the sensitive data sets are secret shared to the cloud servers, a researcher could engage in an MPC protocol

	 5	 The naïve protocol described here does not address many of the primary key challenges in the voting context which revolve around
authenticating voters, preventing double-voting, and proving to a voter that her vote was indeed included in the final tally. These prob-
lems can be addressed using cryptography, and many different special-purpose protocols have been devised. See e.g. (Groth 2005).

Figure 3: The data owners “secret-share” their data among a small number of computation servers. The serv-
ers execute an MPC protocol and return the result (or encryptions of the result) to the data owners (or an
analyst). In this model, the data owners must trust the computation servers not to collude. If the servers
do not collude, then the servers learn nothing about the data (or nothing beyond what is revealed by the
output of the computation alone if the result is returned in the clear). The computational burden on the
data owners does not increase as the complexity of the computation increases.

Alter et al: Computing Statistics from Private Data Art. 31, page 11 of 16

to calculate statistics on the aggregate data sets. Each cloud server would have its own MPC software client,
and performing the MPC calculation would require computation and communication between the cloud
servers. Finally, the result would be returned to the researcher. This architecture has the flexibility to allow
the result of the computation to be returned directly to the researcher, or to the data owners. In the former
case, the data owners might specify a certain set of “legal” statistical tests, and then they would not need
to interact directly with researchers who wanted to perform tests from this category. In the latter case, the
data owners would have to explicitly “ok” each result before it was returned to the researcher. For efficiency
reasons, the three cloud scenario is extremely popular in implementations.6

Security guarantees: In the multi-cloud scenario, there is a risk that all the cloud providers will collude
together to learn information about the private data. If all of the cloud servers collude against the data
owners, all privacy is lost. This type of scenario can be mitigated by choosing cloud servers from different
vendors, under the assumption that it is extremely unlikely that Microsoft, Amazon and Google (or their
rogue employees) will join together to collude against the data owners. If at least one cloud server refuses to
collude against the data owners, then complete privacy can be maintained. As discussed above, the higher
the threshold for collusion-tolerance, the more inefficient the MPC protocol becomes. Protocols in which
strictly fewer than half of the cloud servers collude against the data owners are generally the most efficient.

Efficiency considerations: By secret sharing their data to multiple cloud providers, the data owners can
offload essentially all of the computational burden of MPC to the cloud providers. Unlike the single-cloud
scenario above, in the multi-cloud scenario every statistical query will require large amounts of communi-
cation between the cloud servers. In most situations, cloud providers have extremely fast network connec-
tions, and so the communication burden between the clouds may not be a bottleneck. As a performance
baseline, a three-server implementation of linear regression using the Sharemind platform was used to
compute a linear regression with 10k observations and 10 variables in 12 seconds (Bogdanov et al. 2018).
Two-server, garbled-circuit implementations of regression have run computations with millions of observa-
tions (Nikolaenko et al. 2013; Gascón, Schoppmann, Balle, et al. 2017).

C. Private servers
In order to maintain complete control over their data sets, data owners can eliminate the cloud servers and
perform the MPC protocol themselves. Eliminating the cloud servers reduces the attack surface, but places
much larger computational burden on the data owners themselves. In this model, each data owner (and
possibly the researcher) will maintain an in-house networked server (Figure 4). This server will contain the
data owner’s private data set, and will run the MPC client software. As discussed above, because the MPC
algorithms are public, the data owners could, in principle, purchase their MPC client software from different
vendors or each write their own MPC software client. When a researcher wants to calculate a statistic, the
data owners’ servers will engage in the MPC protocol, and obtain the result, which can then be relayed to the
researcher.

	 6	 The three-cloud environment is the basis of the Sharemind platform, and all of their MPC use-cases (https://sharemind.cyber.ee/).

Figure 4: The data owners play the role of computation servers, and each data owner installs and runs the
MPC client software locally. In this model, the data owners no longer have to trust the computation servers
not to collude. On the other hand, the this increases the computational (and communication) burden of
the data owners who must now execute the MPC protocol themselves. Since all data owners must now
communicate with all other data owners, the communication cost of this architecture does not scale to
support a large number of data owners.

https://sharemind.cyber.ee/

Alter et al: Computing Statistics from Private DataArt. 31, page 12 of 16

Security guarantees: In the private-server model, none of the data owners (or their MPC software clients)
ever accesses anyone else’s private data, the only threat to data security is collusion among the data owners
(i.e., some subset of owners works together to steal data from another participant). As discussed above, MPC
protocols exist which provide privacy even if all other data owners collude against one target owner. If such
a protocol is used, then no assumptions about collusion are necessary to ensure data privacy. For efficiency
reasons, however, it may be necessary to design protocols that only provide privacy when the majority of
data owners are non-colluding.

Efficiency considerations: This architecture imposes the largest computational burden on the data own-
ers themselves, and in this scenario the data owners will most likely each have to assign a dedicated server
to perform the MPC computation. Because the MPC protocols are extremely bandwidth intensive, for this
solution to be practical, the data owners’ servers must be connected with high-bandwidth, low-latency net-
work connections. In this architecture, all data owners (or their software clients) must send messages to all
others, the overall communication cost of the protocol grows quadratically with the number of data owners.
By contrast, in the two protocols discussed above (“single server” and “multiple cloud providers”) the total
communication cost only grows linearly with the number of data owners. Thus, this model may be impracti-
cal when the number of data owners is large. For reference, the largest MPC computation to date had 128
participants (Wang et al. 2017).

V. Possibilities and Frontiers
A. Integration with differential privacy
MPC does not attempt to address the problem of inferential disclosure. The outputs of an MPC protocol are
exact, and the security guarantee is that all the messages exchanged in the MPC protocol during computa-
tion of the output reveal no more information than what is revealed by the output alone. On the other hand,
MPC protocols are extremely general, and in principle MPC can be used to securely compute any functional-
ity — including a differentially private one. Moving forward, we imagine building systems that integrate MPC
with differential privacy to ensure that neither the computation, nor the final output violate individual pri-
vacy. Integrating MPC and differential privacy is an extremely natural goal, and this integration has been pro-
posed (Flood et al. 2013) and prototyped (Narayan et al. 2014) in the context of overseeing financial markets.

B. Certificates of correctness of computation
As discussed above, transparency and reproducibility are core tenets of the open science movement, as these
provide a means for the scientific community to verify and validate each other’s work. Unfortunately, privacy
concerns often prevent publicly sharing data sets, and this presents a barrier to transparency and reproduc-
ibility. A well-designed MPC solution provides a means for achieving reproducibility without sharing any of
the underlying sensitive data. Data owners running MPC clients could essentially provide researchers with
a virtual interface to their data sets, thus allowing future researchers to reproduce statistical calculations
without the need for publicly posting the data sets.

Cryptography provides many additional tools to verify the correctness of computations without violating
privacy. Using digital signatures, data owners could “sign” the output of a computation. Digital signatures
could be easily integrated into a secure computation protocol, so that when computing (say) a linear regres-
sion, the secure computation yields both the regression coefficients as well as a digital signature from the
data owners that attests that these regression coefficients were obtained from a specific computation on
their data sets. More powerful tools like Succinct Non-interactive zero-knowledge ARguments of Knowledge
(SNARKs) (Parno et al. 2013; Ben-Sasson et al. 2013) provide a means of “proving” that an entire calculation
was carried out correctly. Using SNARKs, researchers would have a short, easily verifiable certificate that
their statistics were obtained from specific computations on specific data sets. Thus, SNARKs provide a novel
means of allowing the research community to verify and validate statistical computations, without actually
reproducing the computations in the traditional sense. The cryptocurrency ZCash (Hopwood et al. 2018)
uses SNARKs (based on the libsnark library (Lab n.d.)) to enhance user privacy.

C. Secret disclosure controls
To limit inferential disclosure and prevent linkage attacks, MPC protocols can be made to implement com-
plex mechanisms like differential privacy, or simple mechanisms like pruning outliers or suppressing the
output of calculations that do not depend on enough records. In some situations, however, the disclosure
control rules themselves must remain private. This can occur when the database deals with classified mate-

Alter et al: Computing Statistics from Private Data Art. 31, page 13 of 16

rials, and a user without proper clearance should not be able to identify which types of queries are being
censored. IARPA’s SPAR program7 sought to develop and implement protocols that allowed users to query a
database privately, while simultaneously enforcing query policy compliance. The SPAR program was primar-
ily concerned with SELECT queries (e.g. SELECT name, occupation WHERE age > 35), whereas we envision
supporting statistical queries, so the SPAR technology cannot be used as-is. Although in many applications
there is no need to maintain the privacy of the disclosure control mechanisms themselves, MPC has the
ability to provide this strong notion of privacy, and thus is potentially useful in settings that demand even
more privacy.

VI. MPC Software
A number of open-source software “compilers” have been developed that allow users to write code in a high-
level language that will then be executed as a secure multiparty computation. These tools make it much
easier to prototype and deploy MPC computations, however, they still require some cryptographic exper-
tise to use and deploy. These compilers are academic software projects and not “enterprise-ready” software.
Table 2 shows a few of the most efficient, usable and actively developed open-source MPC compilers.

Many other compilers exist, but these are currently some of the most efficient, usable and actively devel-
oped. Docker containers containing working examples for these (and other) MPC compilers can be found
online.14 Several libraries for Fully Homomorphic Encryption have also been developed, including HElib,15
PALISADE16 and SEAL.17

VII. Conclusion
MPC technology is now sufficiently advanced to be an efficient and practical method for certain types
of statistical calculations. This paper serves to identify and outline some of the cryptographic tools that
would most empower researchers, satisfy the privacy requirements of data owners, and builds a roadmap of
approaches to meeting these requirements that can be implemented by cryptographers.

In the near future, we expect to see many novel real-world applications of MPC supporting scientific
research. To expedite this process, we have laid out a skeleton of the types of statistical techniques and MPC
protocols that are most likely to be of use this in this arena. Developing the most promising use-cases and
building practical and efficient MPC protocols to support these use-cases will require collaboration between
cryptographers and data scientists.

	 7	 IARPA’s Security and Privacy Assurance Research (SPAR) program was active from 2011-2014. http://www.iarpa.gov/index.php/
research-programs/spar (accessed 03/09/2015).

	 8	 https://homes.esat.kuleuven.be/~nsmart/SCALE/.
	 9	 The “covert” security model is slightly weaker than a fully malicious security model. In the malicious model, users are explicitly

prevented from deviating from the prescribed protocol by the protocol itself. In the covert security model users can cheat, but if
they deviate from the protocol, other users will be able to see (and later prove) that the user cheated. Thus cheating users can be
caught and penalized outside of the protocol itself (e.g. by legal means).

	 10	 https://github.com/PICCO-Team/picco.
	 11	 https://github.com/emp-toolkit.
	 12	 https://oblivc.org/.
	 13	 https://github.com/encryptogroup/ABY.
	 14	 https://github.com/MPC-SoK/frameworks.
	 15	 https://shaih.github.io/HElib/.
	 16	 https://git.njit.edu/palisade/PALISADE.
	 17	 https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/.

Table 2: MPC compilers.

System Number of parties Security model Function Language

SCALE-MAMBA8 2+ Covert9 Python-like

PICCO10 3+ Semi-honest C

EMP-Toolkit11 2+ Semi-honest or Malicious C

Obliv-C12 2 Semi-honest C

ABY13 2 Semi-honest C++

http://www.iarpa.gov/index.php/research-programs/spar
http://www.iarpa.gov/index.php/research-programs/spar
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://github.com/PICCO-Team/picco
https://github.com/emp-toolkit
https://oblivc.org/
https://github.com/encryptogroup/ABY
https://github.com/MPC-SoK/frameworks
https://shaih.github.io/HElib/
https://git.njit.edu/palisade/PALISADE
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/

Alter et al: Computing Statistics from Private DataArt. 31, page 14 of 16

One of the primary goals of this paper is to begin building bridges between these two communities
that will lead to new opportunities to extract useful information from the wealth of data being collected
by governments and the private sector without compromising the privacy of individuals or corporations.
An MPC system for statistical analysis will thusly unleash the potential of enormous quantities of data that
are currently restricted by confidentiality, privacy, and secrecy concerns.

Acknowledgements
The authors gratefully acknowledge funding from the Alfred P. Sloan foundation for “Computing Statistics
from Private Data” (Grant Number G-2014-13803), which supported the workshops that resulted in this
paper. We are also grateful to the participants in those workshops for their insights and comments on early
drafts of this paper: Brian Athey, Mark Flood, Shafi Goldwasser, Marcelline Harris, Mary Hill, Susan Jekiel-
iek, Xiaoqian Jiang, John Marcotte, Thomas Murphy, Brian Perron, Trivellore Raghunathan, Kurt Rohloff,
Alessandra Scafuro, Barbara Schneider, Vitaly Shmatikov, Jaideep S. Vaidya, Vinod Vaikuntanathan, Shuang
Wang, Xiao Wang, Kristine Witkowski.

Competing Interests
The authors have no competing interests to declare.

References
Abbe, EA, Khandani, AE and Lo, AW. 2012. Privacy-Preserving Methods for Sharing Financial Risk Expo-

sures. American Economic Review, 102(3): 65–70. DOI: https://doi.org/10.1257/aer.102.3.65
Aly, A, et al. SCALE-MAMBA Software. Available at: https://homes.esat.kuleuven.be/~nsmart/SCALE/

[Accessed November 1, 2018].
Anon. SCANNER. Available at: http://scanner.ucsd.edu/ [Accessed October 31, 2018a].
Anon. Space Data Association. Available at: http://www.space-data.org/sda/ [Accessed October 31, 2018b].
Archer, DW, et al. 2016. Maturity and Performance of Programmable Secure Computation. IEEE security &

privacy, 14(5): 48–56. DOI: https://doi.org/10.1109/MSP.2016.97
Batcher, KE. 1968. Sorting networks and their applications. In: Proceedings of the April 30–May 2, 1968,

spring joint computer conference on – AFIPS ’68 (Spring). DOI: https://doi.org/10.1145/1468075.1468121
Ben-Or, M, Goldwasser, S and Wigderson, A. 1988. Completeness theorems for non-cryptographic fault-

tolerant distributed computation. In: Proceedings of the twentieth annual ACM symposium on Theory of
computing – STOC ’88. DOI: https://doi.org/10.1145/62212.62213

Ben-Sasson, E, et al. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge.
In: CRYPTO, 90–108. DOI: https://doi.org/10.1007/978-3-642-40084-1_6

Blakley, GR. 1979. Safeguarding cryptographic keys. In: Managing Requirements Knowledge, Inter-
national Workshop on. Available at: https://www.computer.org/csdl/proceedings-article/1979/
afips/50870313/12OmNCeK2a1 [Accessed October 31, 2018].

Bogdanov, D, et al. 2018. Rmind: A Tool for Cryptographically Secure Statistical Analysis. IEEE Transactions on
Dependable and Secure Computing, 15(3): 481–495. DOI: https://doi.org/10.1109/TDSC.2016.2587623

Bogdanov, D, Jõemets, M, et al. 2016. Privacy-preserving tax fraud detection in the cloud with realistic data
volumes. Cybernetica. Available at: https://cyber.ee/uploads/2013/05/T-4-24-Privacy-preserving-tax-
fraud-detection-in-the-cloud-with-realistic-data-volumes-1.pdf.

Bogdanov, D, Kamm, L, et al. 2016. Students and Taxes: A Privacy-Preserving Study Using Secure
Computation. Proceedings on Privacy Enhancing Technologies, 2016(3): 117–135. DOI: https://doi.
org/10.1515/popets-2016-0019

Bogdanov, D, Talviste, R and Willemson, J. 2012. Deploying Secure Multi-Party Computation for Financial
Data Analysis. In: Financial Cryptography, 57–64. DOI: https://doi.org/10.1007/978-3-642-32946-3_5

Bogetoft, P, et al. 2009. Secure Multiparty Computation Goes Live. In: Financial Cryptography, 325–343.
DOI: https://doi.org/10.1007/978-3-642-03549-4_20

Cho, H, Wu, DJ and Berger, B. 2018. Secure genome-wide association analysis using multiparty computa-
tion. Nature biotechnology, 36(6): 547–551. DOI: https://doi.org/10.1038/nbt.4108

Cox, DR. 1972. Regression Models and Life Tables. Journal of the Royal Statistical Society, 34(2): 187–220.
Damgård, I, Groth, J and Salomonsen, G. 2003. The Theory and Implementation of an Electronic Voting

System. In: Advances in Information Security, 77–99. DOI: https://doi.org/10.1007/978-1-4615-0239-
5_6

https://doi.org/10.1257/aer.102.3.65
https://homes.esat.kuleuven.be/~nsmart/SCALE/
http://scanner.ucsd.edu/
http://www.space-data.org/sda/
https://doi.org/10.1109/MSP.2016.97
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-642-40084-1_6
https://www.computer.org/csdl/proceedings-article/1979/afips/50870313/12OmNCeK2a1
https://www.computer.org/csdl/proceedings-article/1979/afips/50870313/12OmNCeK2a1
https://doi.org/10.1109/TDSC.2016.2587623
https://cyber.ee/uploads/2013/05/T-4-24-Privacy-preserving-tax-fraud-detection-in-the-cloud-with-realistic-data-volumes-1.pdf
https://cyber.ee/uploads/2013/05/T-4-24-Privacy-preserving-tax-fraud-detection-in-the-cloud-with-realistic-data-volumes-1.pdf
https://doi.org/10.1515/popets-2016-0019
https://doi.org/10.1515/popets-2016-0019
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1007/978-1-4615-0239-5_6
https://doi.org/10.1007/978-1-4615-0239-5_6

Alter et al: Computing Statistics from Private Data Art. 31, page 15 of 16

Doerner, J, Evans, D and Shelat, A. 2016. Secure Stable Matching at Scale. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security – CCS’16. DOI: https://doi.
org/10.1145/2976749.2978373

Du, W and Atallah, MJ. Privacy-preserving cooperative scientific computations. In: Proceedings 14th IEEE
Computer Security Foundations Workshop, 2001. DOI: https://doi.org/10.1109/csfw.2001.930152

Du, W, Han, YS and Chen, S. 2004. Privacy-Preserving Multivariate Statistical Analysis: Linear Regression
and Classification. In: Proceedings of the 2004 SIAM International Conference on Data Mining, 222–233.
DOI: https://doi.org/10.1137/1.9781611972740.21

Dwork, C. 2008. Differential Privacy: A Survey of Results. In: Theory and Applications of Models of
Computation, 1–19. DOI: https://doi.org/10.1007/978-3-540-79228-4_1

Esperança, PM, Aslett, LJM and Holmes, CC. 2017. Encrypted accelerated least squares regression.
Available at: https://arxiv.org/abs/1703.00839.

Flood, MD, et al. 2013. Cryptography and the Economics of Supervisory Information: Balancing Transpar-
ency and Confidentiality. SSRN Electronic Journal. DOI: https://doi.org/10.2139/ssrn.2320795

Galvan, DA, et al. 2014. Satellite Anomalies: Benefits of a Centralized Anomaly Database and Methods for
Securely Sharing Information Among Satellite Operators. Rand Corporation.

Gascón, A, Schoppmann, P, Balle, B, et al. 2017. Privacy-Preserving Distributed Linear Regression on High-
Dimensional Data. Proceedings on Privacy Enhancing Technologies, 2017(4): 345–364. DOI: https://doi.
org/10.1515/popets-2017-0053

Gascón, A, Schoppmann, P, Balle, B, Raykova, M, et al. 2017. Secure Linear Regression on Vertically Parti-
tioned Datasets. In: PoPETs, 345–364.

Gentry, C. 2009. Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st
annual ACM symposium on Symposium on theory of computing – STOC ’09. DOI: https://doi.
org/10.1145/1536414.1536440

Goldreich, O, Micali, S and Wigderson, A. 1987. How to play ANY mental game. In: Proceedings
of the nineteenth annual ACM conference on Theory of computing – STOC ’87. DOI: https://doi.
org/10.1145/28395.28420

Groth, J. 2005. Non-interactive Zero-Knowledge Arguments for Voting. In: Lecture Notes in Computer
Science, 467–482. DOI: https://doi.org/10.1007/11496137_32

Hamada, K, et al. 2013. Practically Efficient Multi-party Sorting Protocols from Comparison Sort Algorithms.
In: Lecture Notes in Computer Science, 202–216. DOI: https://doi.org/10.1007/978-3-642-37682-5_15

Heffetz, O and Ligett, K. 2013. Privacy and Data-Based Research. NBER. DOI: https://doi.org/10.3386/w19433
Hemenway, B, et al. 2016. High-Precision Secure Computation of Satellite Collision Probabilities. In: Security

and Cryptography in Networks, 169–187. DOI: https://doi.org/10.1007/978-3-319-44618-9_9
Hopwood, D, et al. 2018. Zcash Protocol Specication Version 2018.0-beta-32 [Overwinter + Sapling]. Available

at: https://github.com/zcash/zips [Accessed November 2, 2018].
Ishai, Y, Prabhakaran, M and Sahai, A. 2008. Founding Cryptography on Oblivious Transfer – Efficiently.

In: CRYPTO, 572–591. DOI: https://doi.org/10.1007/978-3-540-85174-5_32
Jagadeesh, KA, et al. 2017. Deriving genomic diagnoses without revealing patient genomes. Science,

357(6352): 692–695. DOI: https://doi.org/10.1126/science.aam9710
Jones, JL. 2005. The Sound’s wealthiest zip codes. Puget Sound Business Journal. Available at: https://www.

bizjournals.com/seattle/stories/2005/02/07/focus1.html [Accessed November 1, 2018].
Jónsson, KV, Kreitz, G and Uddin, M. 2011. Secure Multi-Party Sorting and Applications. Available at:

https://eprint.iacr.org/2011/122.
Kamm, L, et al. 2013. A new way to protect privacy in large-scale genome-wide association studies.

Bioinformatics, 29(7): 886–893. DOI: https://doi.org/10.1093/bioinformatics/btt066
Kamm, L and Willemson, J. 2014. Secure floating point arithmetic and private satellite collision analysis.

International Journal of Information Security, 14(6): 531–548. DOI: https://doi.org/10.1007/s10207-014-
0271-8

Keller, M, Scholl, P and Smart, NP. 2013. An architecture for practical actively secure MPC with dishonest
majority. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security –
CCS ’13. DOI: https://doi.org/10.1145/2508859.2516744

Lab, S. libsnark: A C++ library for zkSNARK proofs. Available at: https://github.com/zcash/libsnark
[Accessed November 2, 2018].

https://doi.org/10.1145/2976749.2978373
https://doi.org/10.1145/2976749.2978373
https://doi.org/10.1109/csfw.2001.930152
https://doi.org/10.1137/1.9781611972740.21
https://doi.org/10.1007/978-3-540-79228-4_1
https://arxiv.org/abs/1703.00839
https://doi.org/10.2139/ssrn.2320795
https://doi.org/10.1515/popets-2017-0053
https://doi.org/10.1515/popets-2017-0053
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.3386/w19433
https://doi.org/10.1007/978-3-319-44618-9_9
https://github.com/zcash/zips
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1126/science.aam9710
https://www.bizjournals.com/seattle/stories/2005/02/07/focus1.html
https://www.bizjournals.com/seattle/stories/2005/02/07/focus1.html
https://eprint.iacr.org/2011/122
https://doi.org/10.1093/bioinformatics/btt066
https://doi.org/10.1007/s10207-014-0271-8
https://doi.org/10.1007/s10207-014-0271-8
https://doi.org/10.1145/2508859.2516744
https://github.com/zcash/libsnark

Alter et al: Computing Statistics from Private DataArt. 31, page 16 of 16

Lapets, A, et al. 2018. Accessible Privacy-Preserving Web-Based Data Analysis for Assessing and Addressing
Economic Inequalities. In: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable
Societies (COMPASS) – COMPASS ’18. DOI: https://doi.org/10.1145/3209811.3212701

Lindell, Y and Pinkas, B. 2009. Secure Multiparty Computation for Privacy-Preserving Data Mining. Journal
of Privacy and Confidentiality, 1(1). DOI: https://doi.org/10.29012/jpc.v1i1.566

Lu, C-L, et al. 2015. WebDISCO: A web service for distributed cox model learning without patient-level data
sharing. Journal of the American Medical Informatics Association: JAMIA, 22(6): 1212–1219. DOI: https://
doi.org/10.1093/jamia/ocv083

Lu, W, Kawasaki, S and Sakuma, J. 2017. Using Fully Homomorphic Encryption for Statistical Analysis of
Categorical, Ordinal and Numerical Data. In: NDSS. Available at: https://eprint.iacr.org/2016/1163.

Narayan, A, Papadimitriou, A and Haeberlen, A. 2014. Compute globally, act locally: Protecting federated
systems from systemic threats. In: USENIX.

Nikolaenko, V, et al. 2013. Privacy-Preserving Ridge Regression on Hundreds of Millions of Records. In:
2013 IEEE Symposium on Security and Privacy. DOI: https://doi.org/10.1109/sp.2013.30

Parno, B, et al. 2013. Pinocchio: Nearly Practical Verifiable Computation. In: 2013 IEEE Symposium on Secu-
rity and Privacy. DOI: https://doi.org/10.1109/sp.2013.47

Pettai, M and Laud, P. 2015. Combining Differential Privacy and Secure Multiparty Computation. In: Pro-
ceedings of the 31st Annual Computer Security Applications Conference on – ACSAC 2015. DOI: https://
doi.org/10.1145/2818000.2818027

Rajan, A, et al. 2018. Callisto: A Cryptographic Approach to Detecting Serial Perpetrators of Sexual Miscon-
duct. In: COMPASS. DOI: https://doi.org/10.1145/3209811.3212699

Ryan, G and Rohloff, K. The PALISADE Lattice Cryptography Library. GitLab/PALISADE. Available at: https://
git.njit.edu/palisade/PALISADE [Accessed November 2, 2018].

Shamir, A. 1979. How to share a secret. Communications of the ACM, 22(11): 612–613. DOI: https://doi.
org/10.1145/359168.359176

Wang, X, Ranellucci, S and Katz, J. 2017. Global-Scale Secure Multiparty Computation. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security – CCS ’17. DOI: https://doi.
org/10.1145/3133956.3133979

Yao, AC. 1982. Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982). DOI: https://doi.org/10.1109/sfcs.1982.38

Yao, AC-C. 1986. How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of
Computer Science (sfcs 1986). DOI: https://doi.org/10.1109/sfcs.1986.25

Zahur, S and Evans, D. 2015. Obliv-C: A Language for Extensible Data-Oblivious Computation. Available at:
https://eprint.iacr.org/2015/1153.

Zhang, Y, Steele, A and Blanton, M. 2013. PICCO: A general-purpose compiler for private distributed
computation. In: CCS. DOI: https://doi.org/10.1145/2508859.2516752

How to cite this article: Alter, G, Falk, BH, Lu, S and Ostrovsky, R. 2018. Computing Statistics from Private Data.
Data Science Journal, 17: 31, pp. 1–16. DOI: https://doi.org/10.5334/dsj-2018-031

Submitted: 30 October 2016 Accepted: 25 October 2018 Published: 12 December 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/4.0/.

	 OPEN ACCESS Data Science Journal is a peer-reviewed open access journal published by Ubiquity
Press.

https://doi.org/10.1145/3209811.3212701
https://doi.org/10.29012/jpc.v1i1.566
https://doi.org/10.1093/jamia/ocv083
https://doi.org/10.1093/jamia/ocv083
https://eprint.iacr.org/2016/1163
https://doi.org/10.1109/sp.2013.30
https://doi.org/10.1109/sp.2013.47
https://doi.org/10.1145/2818000.2818027
https://doi.org/10.1145/2818000.2818027
https://doi.org/10.1145/3209811.3212699
https://git.njit.edu/palisade/PALISADE
https://git.njit.edu/palisade/PALISADE
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1109/sfcs.1982.38
https://doi.org/10.1109/sfcs.1986.25
https://eprint.iacr.org/2015/1153
https://doi.org/10.1145/2508859.2516752
https://doi.org/10.5334/dsj-2018-031
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	I. Introduction: The need for statistics from private data
	II. MPC as a solution
	A. What MPC is
	B. What MPC is not
	C. Previous applications of MPC

	III. Use cases and scenarios
	A. Descriptions of data
	B. Examples
	C. Statistics
	D. Privacy assumptions

	IV. MPC architectures
	A. Single cloud
	B. Multiple cloud providers
	C. Private servers

	V. Possibilities and Frontiers
	A. Integration with differential privacy
	B. Certificates of correctness of computation
	C. Secret disclosure controls

	VI. MPC Software
	VII. Conclusion
	Acknowledgements
	Competing Interests
	References
	Table 1
	Table 2
	Figure 1
	Figure 2
	Figure 3
	Figure 4

