
 

H-METRIC: CHARACTERIZING IMAGE DATASETS VIA 
HOMOGENIZATION BASED ON KNN-QUERIES 
 
Welington M. da Silva1, Jose F. Rodrigues Jr.2, Agma J. M. Traina 2, and Sergio F. da 
Silva 2 

1Universidade Federal de Sao Carlos - Campus Sorocaba - Rodovia Joao Leme dos Santos, Km 110 - 18052-
780 - SP-264 - Sorocaba, SP, Brazil 
2Inst. de Ciencias Matematicas e de Computacao - Universidade de Sao Paulo - CP 668 - 13560-970 Sao 
Carlos, SP, Brazil 
*Email: junio@icmc.usp.br 

ABSTRACT 

Precision-Recall is one of the main metrics for evaluating content-based image retrieval techniques. However, it 
does not provide an ample perception of the properties of an image dataset immersed in a metric space. In this 
work, we describe an alternative metric named H-Metric, which is determined along a sequence of controlled 
modifications in the image dataset. The process is named homogenization and works by altering the 
homogeneity characteristics of the classes of the images. The result is a process that measures how hard it is to 
deal with a set of images in respect to content-based retrieval, offering support in the task of analyzing 
configurations of distance functions and of features extractors. 
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1  INTRODUCTION 

Content-based data retrieval is one of the most important techniques for non-dimensional data indexing, such as 
images, sounds, and video. Such techniques are based on the concept of metric space, a mathematical 
abstraction that allows data of any kind to be embedded in a space within which it can be queried. Metric spaces 
are based on features extraction, distance functions, and metric access methods, factors that may determine 
different configurations for the data indexing. The possible definitions of metric spaces are numerous, which 
leads to different solutions for the same problem. For this reason, we need a method to measure the 
effectiveness of the different solutions that are proposed. The more usual way of measuring such efficiency is 
the metric called Precision and Recall (Baeza-Yates, 1999). 

The use of Precision-Recall occurs in settings where content-based data retrieval techniques are designed and 
proposed to the research community, which must verify the efficiency of what is proposed - including features 
extractors, distance functions, and metric access methods. Under these circumstances, Precision-Recall provides 
parameters for the evaluation of results. 

In addition to the methodologies involved in the definition of a metric space, the main factor that influences the 
calculation of the Precision-Recall metric is the dataset over which the metric indexing is done. In the case of 
images, sets in which the images have a high degree of homogeneity tend to have better outcomes in Precision-
Recall plots; while in sets where the images are more visually heterogeneous, the tendency is to have plots 
showing a lower efficiency. In other words, different sets of images represent different challenges when the goal 
is retrieval of images satisfying visual similarity. It can be said that some sets are “more difficult” than others. 

Despite the fact that the set of images has a great impact over the results of the Precision-Recall metric and over 
the actual design of the indexing system, there are no metrics to inform the researcher about how challenging a 
given set of images is or even to state a comparative perspective between different sets of images. This fact may 
hamper the search for techniques of content-based image retrieval, leading to the following problems: 
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• lack of a numerical concise reference with respect to the set of images, preventing a full assessment of 
the results of the Precision-Recall; 

• absence of a clear criterion for choosing sets of test images; 

• impossibility of finding equivalence among different sets of images; 

• additional burden on the choice of sets of images, which must be checked individually; 

• complexity in the description of the characteristics of a given set of images in scientific vehicles. 

In the context of these problems, this paper describes the methodology H-Metric. The proposed metric is an 
approach to describe the properties of a set of images within the problem of data recovery supported by metric 
indexing. H-Metric is based on the Precision-Recall metric; it proceeds by analyzing the spectrum of this 
measure over a sequence of controlled modifications of the characteristics of an image dataset. The 
modifications are based on the concept of homogeneity, that is, how clustered are the classes of images in the 
metric space? The result of the metric corresponds to the point of convergence where the controlled 
modifications of the classes produce a Precision-Recall plot close to ideal. This work focuses on the domain of 
images; however, the proposed measure applies to any field that can be metrically indexed. 

2  RELATED WORK 

When using a set of images in metric indexing experiments, the properties of the data are the main aspect related 
to the results presented at the Precision-Recall plot. It may happen, for example, that a given configuration 
(features extractor and distance function) shows excellent results for a given set of images; however, this set 
would present good results for a large number of other settings. This happens in sets of images whose extracted 
features define well-defined clusters, a circumstance where the determination of an accurate indexing is not a 
tough challenge. In other cases, a researcher may develop new techniques and, by testing her/his methodology, 
she/he observes unsatisfactory results in the form of Precision-Recall curves inferiorly bended. However, the set 
of images that was used would present bad results for a large number of metric indexing configurations. This 
happens with datasets that, in a metric space, show no homogeneity (well-defined groups) with respect to their 
classes. In fact, according to Reeker (2001), the Precision-Recall is biased because it is a superficial metric, as it 
is necessary to count on alternative metrics that work in greater depth to measure not only the metric indexing 
setting but also the trend embedded in the dataset. 

In the cases described in the preceding paragraph, there is a drawback with regard to the process of research and 
development. First, there may be non-efficient techniques that appear to have more potential than what they 
actually do (Powers, 2007). Second, promising techniques can be abandoned early on the basis of dataset 
configurations that are not expected to be treatable in the context of that particular technique. In both cases, the 
process of improving a given configuration metric is harmed because the researcher has not received adequate 
parameters to evaluate her/his methodology. The way it is used, Precision-Recall is often a magnitude without 
reference; it is not known exactly whether it refers to difficult or to easy problems. Thus, this work fits into the 
line advocated by Berger (1985), who states that the validity of an experiment should be conditional to the 
knowledge of how the expected outcome (success) is, a priori, present in the test data. 

3  CONCEPTS 

3.1  Features extraction 

The first task required for non-dimensional data indexing is to transform the data elements into an appropriate 
format, consisting of dimensions - numerical features. In the field of images, this step requires a process called 
features extraction, which is mainly oriented to characteristics of color, shape, and texture. That is, one must 
convert the images into a numerical representation corresponding to a vector x = {x0, x1,..., xn-1} of n 
representative numbers intrinsic to the original data. Classic examples are the color histogram (Felipe, 2005; 
Sheshadri, 2006) and the coefficients obtained using the Fourier transform (Zhang, 2001). Thus, throughout this 
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text, the term features extraction refers to the general formula f:D  �� where D is the data domain and �� ⊂Rn 
is the n-dimensional space of characteristics.  

3.2  Distance Functions 

After the extraction of features, it is necessary to use a similarity measure or distance function, which measures 
the similarity between vectors of numbers extracted from data objects. The simplest way of doing this is to 
consider each numerical characteristic as a coordinate of an n-dimensional space and to calculate the Euclidean 
distance between the vectors. Other examples of measures are the City Block and the Minkowisk family of 
distances (Aggarwal, 2001). The use of different distance measures allows not only a variety of scopes in metric 
spaces but also the numerical weighting of specific dimensions, adding semantic interest in the data recovery. 

3.3  Metric Spaces 

Once a features extractor and a distance function are defined, one can establish a metric space. A metric space is 
a pair M = <��, δ>, where �� is the field of data being indexed and δ:�� x ��   ++ is a function that associates a 
distance to any pair oi, oj ∈��. Given three elements oi, oj, and ok ∈��, the pair M = <��, δ( )> defines a metric 
space where the δ( ) satisfies the following axioms: 

• Symmetry: δ(oi, oj) = δ(oj, oi); 

• Non negativity: δ(oi, oi) = 0 and 0 < δ(oi, oj) < ∞, if oi ≠ oj; 

• Triangular inequality: δ(oi, oj) ≤ δ(oi, ok) + δ(ok, oj). 

In this context, δ( ), the metric distance function, is responsible for calculating the similarity between the domain 
objects. The more similar the objects are, the lower the calculated value is, as well as the more dissimilar the 
objects are, the higher the calculated value. Thus, the data retrieval operations (queries) become intuitive in 
metric spaces based on the concept of similarity. 

3.4  K-Nearest Neighbors Query 

On a metric space, it becomes possible to perform similarity queries. In such queries, given an element of 
interest - the query center, we want to retrieve the elements of the set of images that have smaller distances 
(higher similarity) to this element. The two basic similarity queries are the nearest neighbor query and the range 
query. The nearest neighbor query is set out below: 

Definition (Nearest Neighbor Query): given a query object oq represented by its vector f(oq) and given domain D, 
the nearest neighbor refers to the element on defined as NNQuery(oq) = {on ∈D |∀ oi ∈D, δ(f (oq), f(on)) ≤ 
δ(f(oq), f(oi))}. In the real world, it might translate: “find the image in D which is more similar to the photo of 
the pope”. 

The extrapolation of this definition for k nearest neighbors, k ≥ 1, is straightforwardly given by KNNQuery(oq, 
k), which produces an ordered list of elements in which the (n-1)-th element is closer to oq than the n-th element, 
2 ≤ n ≤ k. 

3.5  Precision-Recall 

The Precision-Recall calculation is done using pre-classified datasets. In such sets, it is possible to perform 
queries whose results can be verified by the examination of the classes of the returned objects and by comparing 
them with the known classes of the given set. The Precision-Recall metric stems from the fact that when a query 
is performed, the retrieved information may or may not be relevant to a given element of interest - according to 
the criteria established for the given domain. This relevance is what determines the pre-classification of data; as 
such, what one wants to assess is the satisfaction of the expected relevance during queries. 
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Precision-Recall can be formalized as follows. For a given query centered on an element of interest oq, consider: 
the data domain D, R the set of relevant (expected) elements, A the set of elements returned by the query, and RA 
the set of relevant elements that were actually retrieved. 

A
RP A=          (1) 

R
RR A=          (2) 

In words, given the context of a query, precision is defined as the ratio of the number of relevant elements that 
were retrieved (|RA|) to the total number of elements returned in the query (|A|) - Eq. 1. Recall is defined as the 
ratio of the number of relevant elements that were retrieved (|RA|) to the number of known relevant items (|R|) - 
Eq. 2. The Precision-Recall is measured along the spectrum of the quantity of relevant elements returned in a 
given query - considering a set A with cardinality big enough for one to obtain Recall 1 (100% of the relevant 
elements) and Precision |R|/|A|. The Precision-Recall calculus, usually, is performed over multiple k-nearest 
neighbors queries. As such, one makes a query for each element of a significant subset of the pre-classified 
items, each query considering k=|A|=|D| elements; the series of Precision-Recall calculations is then aggregated 
by arithmetic mean. 

4  H-METRIC 

In the context presented in Sections 1 and 2, the proposed methodology is the use of Precision-Recall not only 
on the original configuration of a set of images but also extrapolating its principle of operation over a sequence 
of controlled modifications of the set of classes. 

Following the practice of Precision Recall experiments, our methodology demands a pre-classified test set with 
the intent of observing how the data retrieval techniques behave within a controlled test set. Initially, one must 
perform a series of nearest neighbors queries - considering the centroid of each class - and calculating the 
Precision-Recall the traditional way. During the queries, we proceed by identifying the retrieved elements that 
have reduced the performance of the metric retrieval system; in this first iteration, we consider only the t = 1 
element closer to the center. Then, for the elements whose class does not correspond to the class of the center, 
we redefine their classes so that they will not reduce the Precision-Recall measure in further iterations. That is, 
the t-th closest element to the center of each query has its class redefined to conform to the class of the query 
center; in case the class already matches the class of the query center, nothing is done. After this iteration, the 
performance of the Precision-Recall increases. Next we consider larger values of t = {2, 3,...} and proceed with 
the redefinition of the classes of the elements closer to the center. At each iteration, the performance of the 
Precision-Recall increases until, at a certain time, for t < |D|, its curve approaches the ideal. 

The process of redefining the classes of the nearest neighbors, as described in the preceding paragraph, we call 
homogenization process. This designation is due to the definition of better defined - more homogeneous - 
classes within the metric space, what artificially increases the performance of the Precision-Recall. The idea, 
therefore, is to make the challenge of image retrieval increasingly “easier” and to monitor the performance 
achieved at each step. 

Formally: given a query center oq and an image domain D, then, the t-homogeneity of a dataset I refers the 
redefinition of the classes of the elements of sorted list KNNQuery(oq,t)=<o1, o2, ..., ot> such that Class(oi) ≠ 
Class(oq), ∀ oi ∈KNNQuery(oq,t), 1 ≤ i ≤ t. We consider that the homogenization process has converged when: 

∫
1

0 ttt dR ))(R((P  - 1+t

1

0 1t1t dR )(R((P∫ ++  ≤ 0.01     (3) 
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where P(R) is a continuous polynomial function that interpolates the points of Precision-Recall. That is, when 
there is no longer a significant variation - more than 1% - between two consecutive graphs of Precision-Recall, 
we consider that the maximum performance has been achieved. 

At the moment when there is a convergence to a maximum performance, we state the current value of t as 
corresponding to the complexity of the set of images, which will be considered “H-hard”, where h=t. We have 
observed that different datasets converge to a maximum Precision-Recall curve faster than others and, therefore, 
each set has its characteristic H value. 

The calculation of the h-metric is described in Algorithms 1 and 2. In Algorithm 1, successive calculations of 
the area of the Precision-Recall curve are performed, and between each calculation, the pre-processed dataset is 
homogenized to the t-th element. The calculation proceeds iteratively, first by calculating the variation of the 
Precision-Recall curve, then performing the homogenization for each increment, which characterizes the 
iteration - please refer to Algorithm 2. 

 

Algorithm 1. Algorithm to calculate the H-Metric 

 

 

Algorithm 2. Homogenization algorithm 
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5  EXPERIMENTS 

Experiments were performed with three sets of images called “objects”, “places”, and “landscapes”, illustrated 
in Figure 1. Each set contains 10 classes, each with 12 items, summing 360 images. In the experiment, we have 
extracted features of color. More specifically, we have calculated the color histogram of each image, and from 
the histograms we calculated: mean, standard deviation, smoothness, distortion, uniformity, and entropy. Such 
characteristics are generally called first-order statistics and, given a histogram, are calculated as follows. 

The n-th moment of the mean is given by: 

∑
−

=

−=
1

0

)()(
L

i
i

n
in ZpmZμ        (4) 

where Zi refers to the i-th observed intensity in one color channel (red, blue, green, or gray), p(Zi) is the relative 
frequency of intensity Zi, L is the number of different levels of intensity, and m is the mean of the observed 
intensities, given by: 
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Thus, a value of p(Zi) is an estimate of the probability of occurrence of intensity Zi, so that the entire histogram 
can be understood as a probability density function. From there, calculate the statistics of first order. 

Standard deviation, or average contrast: 

22 )( σμσ == Z         (6) 

whereμ 2(Z) is the second moment of the mean. 

Smoothness, which has value 0 for constant intensities and a value close to 1 for oscillating intensities: 

)1(
11 2σ+

−=R         (7) 

Distortion, or third moment around the mean, which approaches 0 for symmetric histograms and tends to 
positive values for histograms skewed to the right and to negative values for histograms skewed to the left: 
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Uniformity, which tends to its maximum value when all values of p(Zi) are equal and tends to lower values 
when the variability is higher: 
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And entropy, which gives an idea of how random the levels p(Zi) are: 
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Figure 1.  Illustration of the three sets of images used in the experiments 

Considering the sets of images, it can be stated that the first set, objects, is very homogeneous. In this set, the 
objects of each class vary only according to the illumination applied to the image. In the second set, places, the 
images are quite complex in terms of shape, but in each class of the set, the images show significant 
homogeneity of colors. The third set, landscapes, uses only shades of gray, and their images are visually 
confusing. 

For each set we have performed 60 queries for the k nearest neighbors, considering k = 120. We used the 
Euclidean distance. From these queries, we have calculated 12 points of Precision-Recall, each one 
corresponding to an increase of 1/12 of recall from the total of images. The 60 values calculated for each of the 
12 points were aggregated using the arithmetic mean. For each dataset, we performed a sequence of 
homogenization processes until they reached the condition of convergence. 

 

 

 

6 RESULTS 

 

Figure 2 presents Precision-Recall plots for the three groups of images after thirty iterations of homogenization, 
with values t = 10, 20, 21, and 22. Following this, it is possible to note that the set of images of objects 
converges with t = 20, so the set is considered 20-hard. Meanwhile, as the set of images of places converges 
with t = 22, this set is characterized as 22-hard. The set of images of landscapes, in turn, does not converge until 
the value of t = 22, which demanded additional iterations of homogenization. 
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Figure 2. Precision-Recall plots for increasing values of homogenization. With $t=20$, one can see the 
convergence of the set of images of objects. With t = 22, it IS possible to observe the convergence of the set of 
images of places. 

Figure 3 presents the Precision-Recall plots for values of t = 102, 103, and 104. With the value of t = 102, 
finally, there is a convergence of the set of landscape images. It is, therefore, 103-hard, which, for a total of 120 
images, indicates that this set is totally contrary to the extraction of color characteristics. 

In the experiments, the values of the H-Metric give an idea of the challenge presented by each set, which 
provides the researcher a sense of how each group can be treated and what to expect from each metric 
configuration. With the metric, the choice of one of these sets for content-based image retrieval becomes 
straight over a single reference value. Based on this value, we can affirm that the sets of objects and landscapes 
should show different results but always obey a distance proportional to the value of the H-Metric. One can also 
say that the set of landscapes should not be considered in settings where the metrics are oriented to color 
histograms because it has a natural complexity that prevents this approach. 

 

Figure 3. Precision-Recall graphs for even higher values of homogenization. Only after t = 103, does the 
Precision-Recall plot of the set of landscape images converge to a stable curve. At this degree of 
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homogenization, the sets of objects and places reach an artificial state, under which most elements are re-
classified to the same class. 

7  CONCLUSIONS 

This paper presents the research and development over a content-based image retrieval system. To this end, we 
have touched the themes of distance function, features extraction, and evaluation of metric indexing techniques, 
discussing how these concepts can be put together to form a data recovery system. We considered three sets of 
images, from which we extracted first order statistics derived from their color histograms. Over these data, we 
performed experiments concerning the proposed methodology, named H-Metric. The H-Metric is based on 
series of KNN queries whose results map to Precision-Recall plots; each query in a series is followed by a 
progressive homogenization of the classes of a given set of images. Initial results reflect the expectations for the 
use of Precision-Recall along the spectrum of configuration defined by the classes in the pre-classified image 
sets. As future work, we foresee the systematic use of H-Metric in combination with metric F-Score, aiming at 
leveraging a ground truth test framework to guide researchers in the task of evaluating data retrieval techniques. 
The framework shall comprise multiple kinds of images and extracted features as well as the calculi of both 
metrics in comparative fashion. 
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